首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The extraction of six sulfonamides (sulfadiazine, sulfadimidine, sulfathiazole, sulfachloropiridazine, sulfadimethoxine, and sulfaquinoxaline) from soils with different physicochemical characteristics and at several aging times was investigated. Conventional mechanical shaking, microwave-assisted extraction, ultrasound probe-assisted extraction and pressurized liquid extraction techniques were evaluated. The four techniques provided similar results when applied to freshly contaminated soils. However, microwave-assisted extraction was the most suitable to extract sulfonamide aged residues from soils. Microwave-assisted extraction was applied to eight soils aged for 3 months, using acetonitrile:buffer pH 9 (20:80) as the extraction solvent, and recoveries ranged from 15–25% for STZ to 42–64% for SDM.  相似文献   

2.
Matrix solid-phase dispersion extraction was applied to the extraction of sulfadiazine, sulfamerazine, and sulfamethazine from human and animal bloods. The separation and determination of the analytes were carried out by high-performance liquid chromatography. The effects of the types of the dispersion adsorbents and elution solvents were investigated, and the highest recovery was obtained when diatomaceous earth was used as the dispersion adsorbent, while acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the sulfonamides in blood samples was 0.020-10.0 μg/mL, and the average recoveries of the three sulfonamides were higher than 87.5%.  相似文献   

3.
A new, fast and low-cost sample preparation for the determination of sulfonamide (SA) residues in chicken muscle by LC technique has been developed. The procedure involves single extraction of sample with acetonitrile, followed by a rapid clean-up and was called "dispersive solid-phase extraction" (dispersive SPE). Using dispersive SPE 25 mg of octadecyl sorbent was added to 1 ml of acetonitrile extract, mixed and centrifuged. The acetonitrile layer was evaporated and residue was dissolved in acetate buffer (pH 3.5). Analysed compounds were detected by fluorescence detector after pre-column derivatization with fluorescamine. The separation of analytes was performed with gradient elution with mobile phase methanol: 2% acetic acid and RP-LC analytical column. The whole procedure was evaluated for six sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfametoxypirydazine, sulfametoxazole and sulfadimetoxine) according to the European Commission Decision 2002/657/EC. Specificity, decision limit (CCalpha), detection capacity (CCbeta), trueness and precision were determined during validation process. The dispersive SPE with octadecyl sorbent was found suitable for sample preparation before sulfonamide determination in chicken muscle. As it was found the most of endogenous matrix components were removed and the analytes were isolated from spiked samples with recoveries above 90%. The used analytical conditions allow to successively separate all the tested sulfonamides with the limit of detection at the level of 1-5 microg/kg. The method is simple, rapid and more effective than conventional methods.  相似文献   

4.
Liu J  Jiang M  Li G  Xu L  Xie M 《Analytica chimica acta》2010,679(1-2):74-80
Salting-out liquid-liquid extraction (LLE) uses water-miscible organic solvents as the extractants. The principle of it is based on the phase separation of water-miscible organic solvents from the aqueous solutions in the presence of high concentration of salts. As an effort to miniaturization, in the present study, a 1-mL syringe was employed as the phase separation device for salting-out LLE. Once the phase separation occurred, the upper layer could be narrowed into the needle tip by pushing the plunger; thus, the collection of the upper layer solvent was convenient. By miniaturization, the consumption of organic solvent was decreased as low as possible. Four sulfonamides were used as model analytes. The optimal salting-out parameters were as follows. 150 μL of acetonitrile was added to the 500 μL of sample solution containing 300 mg mL(-1) sodium chloride at a pH of 6.5. This procedure afforded a convenient, fast and cost-saving operation with good cleanup ability for the model analytes. It showed promising applications for different matrices. Herein, food (honey), environmental water (river water) and biological fluid (human urine) were investigated. Satisfactory results were obtained. An additional bonus of this sample preparation method is that, owing to its water-miscible nature, the extraction solvent is compatible with various analytical systems, like gas chromatography, high-performance liquid chromatography and capillary electrophoresis.  相似文献   

5.
A dual responsive molecularly imprinted polymer sensitive to both photonic and magnetic stimuli was successfully prepared for the detection of four sulfonamides in aqueous media. The photoresponsive magnetic molecularly imprinted polymer was prepared by surface imprinting polymerization using superparamagnetic Fe3O4 nanoparticles functionalized with a silica layer as a support, water‐soluble 4‐[(4‐methacryloyloxy)phenylazo]benzenesulfonic acid as the functional monomer, and sulfadiazine as the template. The magnetic molecularly imprinted polymers showed specific affinity to sulfadiazine and its structural analogs in aqueous media. Upon alternate irradiation at 365 and 440 nm, the quantitative bind and release of the four sulfonamides by magnetic molecularly imprinted polymers occurred. Furthermore, the prepared magnetic molecularly imprinted polymers were used as solid‐phase extraction material selectively extracted the four sulfonamides from water samples with good recoveries. Thus, a simple, convenient, and reliable detection method for sulfonamides in the environment based on responsive magnetic molecularly imprinted polymers was successfully established.  相似文献   

6.
A magnetic solid‐phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole‐coated silica provided a high extraction efficiency due to the π–π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30–200 μg/L for sulfadiazine and sulfamerazine, and 1.0–200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7–99.7% with relative standard deviations of < 6%.  相似文献   

7.
In this paper, a novel SPME mode, PDMS-coated solid glass microspheres (SGMs), were prepared by sol-gel method. Using homemade thermal desorption unit coupled with CGC-FID, six PAHs as model analytes, the performance of the new mode was characterized. The new extractive phase exhibited high thermal stability and satisfactory extraction capability. The detection limits were 0.01-0.045 ng/mL, and the linearity was from 0.5 ng/mL to 96 ng/mL. The R.S.D.s of repeatability for retention time and peak area were all within 0.074% and 6.7%, respectively. The recoveries of the PAHs were 78-127% from the samples taken from river water.  相似文献   

8.
Niu H  Cai Y  Shi Y  Wei F  Liu J  Mou S  Jiang G 《Analytica chimica acta》2007,594(1):81-92
The adsorptive potential of carbon nanotubes (single-walled carbon nanotubes and multi-walled carbon nanotubes) for solid-phase extraction of three groups of highly polar compounds (namely cephalosporins antibiotics, sulfonamides and phenolic compounds) was tested in this article. The analytes were strongly retained by the carbon nanotubes. And acceptable recoveries were obtained with the addition of ammonium acetate into eluents. The effects of solution pH on the recoveries of the antibiotics and phenolic compounds were examined. To check the retention abilities of three groups of compounds on carbon nanotubes, fixed amount of each analyte was added to different volumes (up to 500 mL) of aqueous solution, and then extracted by the sorbents. Comparative studies showed that the carbon nanotubes were much superior to C18 for the extraction of the highly polar analytes. For the cephalosporins antibiotics and sulfonamides, the carbon nanotubes showed stronger retention capability than graphitized carbon blacks, but for some of the phenolic compounds graphitized carbon blacks seemed to be more suitable, indicating different retention mechanisms of these analytes. To further assess the enrichment ability of carbon nanotubes for highly polar compounds, the solid-phase extraction method of multi-walled carbon nanotubes packed cartridge was well developed, and the sulfonamides were used as model compounds. Under the optimal procedures, the detection limits of sulfonamides were in the range of 27-38 ng L−1. The spiked recoveries from several real water samples obtained for sulfathiazole and sulfadiazine ranged from 55% to 79% and 72% to 92%, respectively, while the recoveries of sulfapyridine and sulfamethazine were in the range of 85-102%.  相似文献   

9.
A method for the quantitative determination of three macrolides, five sulfonamides, ranitidine, omeprazole and trimethoprim in sewage sludge samples was developed by using pressurized liquid extraction and high-performance liquid chromatography-electrospray ionization mass spectrometry. The extraction solvent and such operational parameters as temperature, pressure, extraction time and purge time were optimized in pressurized liquid extraction. The experimental conditions were: an extraction solvent of water (pH 3):methanol (1:1, v/v), a temperature of 80 degrees C, a pressure of 1500 psi, a sample weight of 5 g, an extraction time of 5 min, one cycle, a flush volume of 60% and a purge time of 120 s. All recoveries were over 74%, except those for ranitidine whose value was 54%. The repeatability and reproducibility between days expressed as relative standard deviation (n = 3) were lower than 11% and 15%, respectively. The limit of detection values ranged from 2 to 11 microg/kg dry weight (d.w.). The method was applied to determine the pharmaceuticals in sewage sludge from two domestic sewage treatment plants. Roxithromycin and tylosin were determined in the samples and tylosin showed the highest value (4.0 mg/kg d.w.).  相似文献   

10.
This paper describes a systematic approach to the development of a solid-phase extraction method for simultaneous extraction of 10 antibiotic residues in bovine milk, belonging to groups of sulfonamides, tetracyclines, and pyrimethamine. The sample preparation steps include acidic deproteinization of milk proteins followed by sample enrichment and cleanup using a polymer-based Oasis HLB solid-phase extraction cartridge. The analyses were carried out by using a method based on liquid chromatography-electrospray ionisation-mass spectrometry with positive ion mode. The parameters affecting the extraction efficiency such as sample loading pH, SPE wash solvent composition, and eluting solution pH were carefully investigated and optimized. The developed solid-phase extraction procedure coupled to multiresidue liquid chromatography-electrospray ionization-mass spectrometry method was applied for the analysis of 10 antibiotic residues in milk samples, and it proved to be simple, sensitive, and selective providing a recovery ranging from 70 to 106%.  相似文献   

11.
分子印迹固相萃取牛奶中甲胺磷   总被引:4,自引:0,他引:4  
以甲胺磷为印迹分子、α-甲基丙烯酸为功能单体及三羟甲基丙烷三丙烯酸酯为交联剂,通过悬浮聚合法制备甲胺磷分子印迹聚合物(MIP)微球,并用该聚合物进行了牛奶中甲胺磷残留的固相萃取研究.静态吸附实验表明,在结构相似物乙酰甲胺磷和水胺硫磷为竞争底物存在下,MIP对甲胺磷有良好的吸附识别能力.在优化条件下,印迹分子的固相萃取回收率达96.4%,能够用于甲胺磷的富集,而空白聚合物却不具备这样的特性.当实际牛奶样品中甲胺磷、乙酰甲胺磷和水胺硫磷加标水平为100μg/kg时,甲胺磷回收率达87.4%,乙酰甲胺磷和水胺硫磷的回收率低于15%.结果表明分子印迹固相萃取对甲胺磷有很好的专一选择性,且回收率能够满足农药残留分析要求.在相同实验条件下,与C18固相萃取柱进行比较,分子印迹固相萃取的选择性及样品净化能力优势明显.  相似文献   

12.
A simple sugaring-out assisted liquid-liquid extraction method combined with high-performance liquid-chromatography with fluorescence detection (HPLC-FL) was developed for the extraction and determination of sulfonamides in honey. Sample preparation consisted of acid hydrolysis to release sugar-bound sulfonamides. After derivatization with fluorescamine, the derivatives were partitioned into the organic layer under the honey (sugar)/water/acetonitrile system. The clear organic extract obtained by centrifugation could be injected into the HPLC system either directly or after dilution. Linearity was obtained with the coefficient of determination (R(2)) higher than 0.998 from 2 to 200 ng/mL. Under the optimal conditions, recoveries were determined for honey fortified at three levels (5, 20, and 100 ng/g) were 80.9-99.6% with coefficients of variation of 0.3-4.4%. Limits of detection for the sulfonamides studied were found to range from 0.6 to 0.9 ng/g.  相似文献   

13.
Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines.  相似文献   

14.
Hexafluoroisopropanol (HFIP)-induced coacervation in aqueous mixed systems of catanionic surfactants of dodecyltrimethylammonium bromide (DTAB) and sodium dodecyl sulfate (SDS) was described in detail, and its application in the extraction of strongly polar sulfonamides (SAs) was investigated. With 10 % (v/v) HFIP inclusion, coacervation formation and two-phase separation occur in a wide range of SDS/DTAB mole ratios (88:12~0:100 mol/mol) and total surfactant concentrations (10~200 mmol/L). The interactions between HFIP and DTAB play an important role in coacervation formation. The HFIP-induced SDS–DTAB coacervation extraction proves to be an efficient method for the extraction and preconcentration of SAs. Both hydrophobic interaction and polar interactions (hydrogen–bond, electrostatic, and π-cation) contribute to the distribution of SAs into coacervate phase. The proposed HFIP-induced SDS–DTAB coacervation extraction combined with HPLC–UV was employed for the extraction and quantitative determination of SAs in environmental water samples. Limits of detection were 1.4~2.5 ng mL?1. Excellent linearity with correlation coefficients from 0.9990 to 0.9995 was obtained in the concentration of 0.01~10 μg mL?1. Relative recoveries were in the range of 93.4~105.9 % for analysis of the lake, underground, and tap water samples spiked with SAs at 0.01, 1.0, and 10 μg/mL, respectively. Relative standard deviations were 0.7~3.2 % for intraday precision and 1.3~4.6 % for interday precision (n?=?3). Concentration factors were 17~49 for three water samples spiked with 0.01 μg/mL SAs. The results demonstrate that the proposed extraction method is feasible for the preconcentration and determination of trace SAs in real water samples. Graphical abstract
?  相似文献   

15.
In this study, two novel spherical/hollow metal-organic frameworks were successfully synthesized, and further modified by a mild non-covalent modification strategy with dopamine and 1,4-benzenedithiol(BDT) as polymeric monomers to obtain pB DT@PDA-Ni-MOF and p BDT@PDA-Ni/Co-MOF, respectively. The results showed that the above MOFs possessed extremely fast adsorption rates and ideal adsorption capacities for sulfonamides(SAs) and the modified MOFs exhibited enhanced adsorption capacities for SAs ...  相似文献   

16.
Solid-phase extraction has been widely employed for the preparation of DNA templates for polymerase chain reaction (PCR)-based analytical methods. Among the variety of adsorbents studied, magnetically responsive silica particles are particularly attractive due to their potential to simplify, expedite, and automate the extraction process. Here we report a facile method for the preparation of such magnetic particles, which entails impregnation of porous silica microspheres with iron salts, followed by calcination and reduction treatments. The samples were characterized using powder X-ray diffractometry (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, and vibrating sample magnetometry (VSM). XRD data show that magnetite nanocrystals of about 27.2 nm are produced within the pore channels of the silica support after reduction. SEM images show that the as-synthesized particles exhibit spherical shape and uniform particle size of about 3 μm as determined by the silica support. Nitrogen sorption data confirm that the magnetite-loaded silica particles possess typical mesopore structure with BET surface area of about 183 m2/g. VSM data show that the particles display paramagnetic behavior with saturation magnetization of 11.37 emu/g. The magnetic silica microspheres coated with silica shells were tested as adsorbents for rapid extraction of genomic DNA from soybean-derived products. The purified DNA templates were amplified by PCR for screening of genetically modified organisms (GMOs). The preliminary results confirm that the DNA extraction protocols using magnetite-loaded silica microspheres are capable of producing DNA templates which are inhibitor-free and ready for downstream analysis.  相似文献   

17.
The matrix solid-phase dispersion (MSPD) was applied for extracting seven sulfonamides (SAs) in liver samples. The separation and determination were carried out by high-performance liquid chromatography. The analytes were derivated with fluorescamine and detected with fluorescence detector. The types of dispersion adsorbents for MSPD were examined and the highest recovery was obtained when the diatomaceous earth was used as the dispersion adsorbent and the mass ratio of dispersion adsorbent to sample was 3:1. The acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the SAs in liver samples was 5.0-1000.0 ng/g. The porcine, chicken and cattle liver samples were analyzed and the average recoveries of seven SAs were higher than 84.6%.  相似文献   

18.
A simple, convenient, and economic self-assembly miniaturized syringe assisted extraction (mini-SAE) using poly (hydroxyethyl methacrylate) polymer (PHEMA) as sorbent coupled with liquid chromatography was proposed for rapid screening of sulfadiazine (SD) and sulfamonomethoxine (SMM) in milk. The water-compatible PHEMA was synthesized by reversible addition-fragmentation chain transfer precipitation polymerization using trithiocarbonate as chain transfer agent and methanol–water system as reaction medium. The obtained PHEMA sorbent showed good affinity to sulfonamides and was successfully applied as a special sorbent for a mini-SAE device for simultaneous extraction and isolation of SD and SMM in milk samples. Under the optimum condition, good linearity was obtained in a range of 7.0–700 ng g−1 (r ≥ 0.9995) and the average recoveries of SD and SMM at three spiked levels were ranged from 85.6 to 100.3% with the relative standard deviations (RSD) ≤6.5%. The presented PHEMA-mini-SAE protocol could be potentially applied as an alternative tool for analyzing the residues of SAs in complicated biological samples.  相似文献   

19.
20.
A sensitive, economical, and miniaturized self-assembly pipette tip graphene solid-phase extraction (PT-G-SPE) coupled with liquid chromatography fluorescence detection (LC-FD) was developed for rapid extraction and determination of three sulfonamide antibiotics (SAs) in environmental water samples. The PT-G-SPE cartridge, assembled by packing 1.0 mg of graphene as sorbent into a 100 μL pipette tip, showed high adsorption capacity for the SAs owing to the large surface area and unique structure of graphene. The factors that affected the extraction efficiency of PT-G-SPE, including sample volume, pH, sorbent amount, washing solvent and eluent solvent were optimized. Good linearity for SAs was obtained in a range of 2–4000 pg mL−1 with correlation coefficients (r2) ≥ 0.9993. The recoveries of the SAs at three spiked levels ranged from 90.4% to 108.2% with relative standard deviations (RSD) ≤ 6.3%. In comparison with other sorbents such as C18, HLB, SCX, PCX, and multiwalled carbon nanotubes, one advantage of using graphene as sorbent of pipette tip solid-phase extraction (PT-SPE) was that PT-G-SPE could adsorb larger sample volume (10 mL) at a small amount of sorbent (1 mg) and low solvent consumption with good extraction efficiency, which not only increased the fraction of analytes to LC and the sensitivity of SAs determination, but also reduced the cost and pollution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号