首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
张德悦  马富明 《东北数学》2004,20(2):236-252
In this paper, we consider the electromagnetic scattering from periodic chiral structures. The structure is periodic in one direction and invariant in another direction. The electromagnetic fields in the chiral medium are governed by the Maxwell equations together with the Drude-Born-Fedorov equations. We simplify the problem to a two-dimensional scattering problem and we show that for all but possibly a discrete set of wave numbers, there is a unique quasi-periodic weak solution to the diffraction problem. The diffraction problem can be solved by finite element method. We also establish uniform error estimates for the finite element method and the error estimates when the truncation of the nonlocal transparent boundary operators takes place.  相似文献   

2.
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R^3. The periodic structure separates two homogeneous regions. The medium inside the structure is chiral and nonhomogeneous. In this paper, variational formulations coupling finite element methods in the chiral medium with a method of integral equations on the periodic interfaces are studied. The well-posedness of the continuous and discretized problems is established. Uniform convergence for the coupling variational approximations of the model problem is obtained.  相似文献   

3.
The time-harmonic electromagnetic plane waves incident on a perfectly conducting obstacle in a homogeneous chiral environment are considered.A two-dimensional direct scat- tering model is established and the existence and uniqueness of solutions to the problem are discussed by an integral equation approach.The inverse scattering problem to find the shape of scatterer with the given far-field data is formulated.Result on the uniqueness of the inverse problem is proved.  相似文献   

4.
The space-time monopole equation is the reduction of anti-self-dual Yang-Mills equations in R2,2 to R2,1. This equation is a non-linear wave equation, and can be encoded in a Lax pair. An equivalent Lax pair is used by Dai and Terng to construct monopoles with continuous scattering data, and then the equation can be linearized by the scattering data, allowing one to use the inverse scattering method to solve the Cauchy problem with rapidly decaying small initial data. In this paper, we use the terminology of holomorphic bundle and transversality of certain maps, parametrized by initial data, to give more initial data, with which we can use scattering method to solve the Cauchy problem of the monopole equation up to gauge transformation.  相似文献   

5.
This paper is concerned with the inverse problem of scattering of time-harmonic acoustic waves by an inhomogeneous penetrable obstacle in a piecewise homogeneous medium. The well-posedness of the direct problem is first established by using the integral equation method. We then proceed to establish two tools that play important roles for the inverse problem: one is a mixed reciprocity relation and the other is a priori estimates of the solution on some part of the interfaces between the layered media. For the inverse problem, we prove in this paper that both the penetrable interfaces and the possible inside inhomogeneity can be uniquely determined from a knowledge of the far field pattern for incident plane waves.  相似文献   

6.
It is shown that a great sort of soliton equations, such as sine-Grodon equation and others whose inverse scattering problem is described by the AKNS system, has both noncompact and compact algebra structures on the same footing. The spinor AKNS system and realization on sphere with respect to the compact structure of the soliton equations are given.  相似文献   

7.
In this paper, by using the critical point theory, the existence of periodic and subharmonic solutions to a class of second order functional difference equations is obtained. The main approach used in our paper is variational technique and the Saddle Point Theorem. The problem is to solve the existence of periodic and subharmonic solutions of second order forward and backward difference equations.  相似文献   

8.
The doubly periodic Hilbert boundary value problem is discussed in this paper.First,certain kind of integral representations of doubly quasi-periodic analytic functions inmultiplication is established so that the Dirichlet problem of such functions is solved.Then,by the method of regularization,the Hilbert boundary value problem is transferredto such a problem,and it is reduced at length to some Fredholm integral equation.Thenumber of solutions and conditions of solvability as well as the form of the generalsolution are obtained.  相似文献   

9.
Consider the diffraction of a time-harmonic wave incident upon a periodic chiral structure. The diffraction problem may be simplified to a two-dimensional one. In this paper, the diffraction problem is solved by a finite element method with perfectly matched absorbing layers (PMLs). We use the PML technique to truncate the unbounded domain to a bounded one which attenuates the outgoing waves in the PML region. Our computational experiments indicate that the proposed method with complicated chiral grating structures. is efficient, which is capable of dealing  相似文献   

10.
In this paper, we propose a GL method for solving the ordinary and the partial differential equation in mathematical physics and chemics and engineering. These equations govern the acustic, heat, electromagnetic, elastic, plastic, flow, and quantum etc. macro and micro wave field in time domain and frequency domain. The space domain of the differential equation is infinite domain which includes a finite inhomogeneous domain. The inhomogeneous domain is divided into finite sub domains. We present the solution of the differential equation as an explicit recursive sum of the integrals in the inhomogeneous sub domains. Actualy, we propose an explicit representation of the inhomogeneous parameter nonlinear inversion. The analytical solution of the equation in the infinite homogeneous domain is called as an initial global field. The global field is updated by local scattering field successively subdomaln by subdomain. Once all subdomains are scattered and the updating process is finished in all the sub domains, the solution of the equation is obtained. We call our method as Global and Local field method, in short , GL method. It is different from FEM method, the GL method directly assemble inverse matrix and gets solution. There is no big matrix equation needs to solve in the GL method. There is no needed artificial boundary and no absorption boundary condition for infinite domain in the GL method. We proved several theorems on relationships between the field solution and Green's function that is the theoretical base of our GL method. The numerical discretization of the GL method is presented. We proved that the numerical solution of the GL method convergence to the exact solution when the size of the sub domain is going to zero. The error estimation of the GL method for solving wave equation is presented. The simulations show that the GL method is accurate, fast, and stable for solving elliptic, parabolic, and hyperbolic equations. The GL method has advantages and wide applications in the 3D electromagnetic (EM)  相似文献   

11.
§1Introduction Phenomenaofopticalactivityinspecialmaterialshavebeenknownsincethe beginningoflastcentury.Thoughopticalactivityhasbeenconsideredinopticsandin quantummechanicsformanyyears,itsanalysiswithintheframeworkofclassical electromagneticfieldtheoryarosemuchlater.Recently,therehasbeenaconsiderable interestinthestudyofscatteringanddiffractionbychiralmedium.Ingeneral,the electromagneticfieldsinsidethechiralmediumaregovernedbyMaxwellequations togetherwithDrude-Born-Fedorovequationsinwhichth…  相似文献   

12.
We derive and analyze two equivalent integral formulations for the time-harmonic electromagnetic scattering by a dielectric object. One is a volume integral equation (VIE) with a strongly singular kernel and the other one is a coupled surface-volume system of integral equations with weakly singular kernels. The analysis of the coupled system is based on standard Fredholm integral equations, and it is used to derive properties of the volume integral equation.  相似文献   

13.
This article is concerned with the scattering of acoustic and electromagnetic time harmonic plane waves by an inhomogeneous medium. These problems can be translated into volume integral equations of the second kind – the most prominent example is the Lippmann–Schwinger integral equation. In this work, we study a particular class of scattering problems where the integral operator in the corresponding operator equation of Lippmann–Schwinger type fails to be compact. Such integral equations typically arise if the modelling of the inhomogeneous medium necessitates space-dependent coefficients in the highest order terms of the underlying partial differential equation. The two examples treated here are acoustic scattering from a medium with a space-dependent material density and electromagnetic medium scattering where both the electric permittivity and the magnetic permeability vary. In these cases, Riesz theory is not applicable for the solution of the arising integral equations of Lippmann–Schwinger type. Therefore, we show that positivity assumptions on the relative material parameters allow to prove positivity of the arising volume potentials in tailor-made weighted spaces of square integrable functions. This result merely holds for imaginary wavenumber and we exploit a compactness argument to conclude that the arising integral equations are of Fredholm type, even if the integral operators themselves are not compact. Finally, we explain how the solution of the integral equations in L 2 affects the notion of a solution of the scattering problem and illustrate why the order of convergence of a Galerkin scheme set up in L 2 does not suffer from our L 2 setting, compared to schemes in higher order Sobolev spaces.  相似文献   

14.
We analyze electromagnetic scattering of transverse magnetic polarized waves from a diffraction grating consisting of a periodic, anisotropic, and possibly negative index dielectric material. Such scattering problems are important for the modelization of, for example, light propagation in nano‐optical components and metamaterials. The periodic scattering problem can be reformulated as a strongly singular volume integral equation, a technique that attracts continuous interest in the engineering community but has rarely received rigorous theoretic treatment. In this paper, we prove new (generalized) Gårding inequalities in weighted and unweighted Sobolev spaces for the strongly singular integral equation. These inequalities also hold for materials for which the real part of the material parameter takes negative values inside the diffraction grating, independently of the value of the imaginary part. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we consider the method of non-linear boundary integral equation for solving numerically the inverse scattering problem of obliquely incident electromagnetic waves by a penetrable homogeneous cylinder in three dimensions. We consider the indirect method and simple representations for the electric and the magnetic fields in order to derive a system of five integral equations, four on the boundary of the cylinder and one on the unit circle where we measure the far-field pattern of the scattered wave. We solve the system iteratively by linearizing only the far-field equation. Numerical results illustrate the feasibility of the proposed scheme.  相似文献   

16.
Consider a time-harmonic electromagnetic plane wave incident on a periodic (grating) structure. An inhomogeneous (subwavelength) object is placed inside the periodic structure. The scattering problem is to study the electromagnetic field distributions. The problem arises in the study of near-field optics and has many physical and biological applications. This work is devoted to modeling and analysis of a near-field optics problem. An integral representation approach is presented to solve the problem. It is shown particularly that the perturbation due to the object decays exponentially along the periodic direction of the structure, provided that no surface waves occur. Based on the approach, a general solution method is discussed and the well-posedness of the model problems are established.  相似文献   

17.
We consider the scattering of time-harmonic electromagnetic waves from a chiral medium. It is known for the Drude–Born–Fedorov model that the forward scattering problem can be described by an integro-differential equation. In this paper we study a Galerkin finite element approximation for this integro-differential equation. Our Galerkin scheme, which relies on a suitable periodization of the integral equation, enables the use of the fast Fourier transform and a simple numerical implementation. We establish a quasi-optimal convergence analysis for the Galerkin method. Explicit formulas for the discrete scheme are also provided.  相似文献   

18.
The problem under consideration is that of the scattering of time periodic electromagnetic fields by metallic obstacles. A common approximation here is that in which the metal is assumed to have infinite conductivity. The resulting problem, called the perfect conductor problem, involves solving Maxwell's equations in the region exterior to the obstacle with the tangential component of the electric field zero on the obstacle surface. In the interface problem different sets of Maxwell equations must be solved in the obstacle and outside while the tangential components of both electric and magnetic fields are continuous across the obstacle surface. Solution procedures for this problem are given. There is an exact integral equation procedure for the interface problem and an asymptotic procedure for large conductivity. Both are based on a new integral equation procedure for the perfect conductor problem. The asymptotic procedure gives an approximate solution by solving a sequence of problems analogous to the one for perfect conductors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号