首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We consider the initial value problem for the Fokker–Planck–Boltzmann equation namely, viewed as the Boltzmann equation with an additional diffusion term in velocity space to describe, for instance, the transport in thermal baths of binary elastic collisional particles. The strong solution for initial data near an absolute Maxwellian is proved to exist globally in time and tends asymptotically in the -norm to another time dependent self-similar Maxwellian in large time. The effect of the diffusion in phase space is investigated. It produces a diffusion process in velocity space and results in a heating process on the macroscopic fluid-dynamic observable, accelerating the convergence of solutions to the equilibrium of a self-similar Maxwellian at a faster time-decay rate than the Boltzmann equation. This phenomena is also observed for homogeneous Fokker–Planck–Boltzmann equations, where the time-decay rate in the -norm to the self-similar Maxwellian is proved to be faster than exponential. Moreover, the Fokker–Planck–Boltzmann equation is shown to converge (under an appropriate scaling) strongly to the Boltzmann equation in the process of the zero diffusion limit.  相似文献   

2.
The saturation distribution—within an anisotropic aquifer—of a pollutant discharging from an underground source is modeled by a two-dimensional, nonlinear diffusion–convection equation. A closed form self-similar solution is obtained for the steady saturation distribution in the immiscible zone. The results may be used to rationalize field data collected for predicting locations of underground leakage sources in aquifers and to understand the influence of the anisotropic permeability’s parameters on the oil distribution in the porous medium. An erratum to this article can be found at  相似文献   

3.
Vacuum impregnation is a process method in which air and native solution are removed from the porous space of a given porous material and replaced by an external solution. Vacuum impregnation is divided into two steps: Firstly, the porous material is immersed in a liquid solution and exposed to subatmospheric pressure for a given time to ensure that air trapped in the porous materials will be removed; secondly, atmospheric pressure is re-established and the external solution penetrates the pore structure of the porous material. The objective of this study was to describe the hydrodynamic mechanisms involved in vacuum impregnation of porous materials as a function of capillary number and viscosity ratio. To achieve the objectives proposed in the present study, a transparent glass micromodel 7.7 cm × 7.4 cm was first constructed using the photolithographic technique. In addition, a stainless steel vacuum tank was built. The tank top was covered with a transparent reinforced glass plate. The whole system was connected to a vacuum pump, and a conventional video camera was adapted to record the experiments. Liquid saturation was determined through the image analysis process. Capillary number and viscosity ratio were determined for the drainage and imbibition processes. For the systems studied, we conclude that transport mechanisms ranged between stable displacement and capillary fingering during the vacuum step (drainage) while transport mechanisms ranged between continuous capillary and discontinuous capillary domains during the atmospheric step (imbibition). Earlier work indicated that our proposed process should be even more efficient for realistically large systems.  相似文献   

4.
This work is concerned with deriving generalized self-similar solutions for a thermal model of two-phase filtration in porous media. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 9–17, May–June, 1999.  相似文献   

5.
A model problem of the motion of water and air in thawing snow is examined using the Masket-Leverett equations of two-phase filtration. The theorem of existence of a self-similar solution is proved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 13–23, July–August, 2008.  相似文献   

6.
Microdroplet absorption by two-layer porous media is studied both theoretically and experimentally. A two-dimensional model for liquid flow from a droplet into a porous medium is presented and veri.ed based on a simultaneous numerical solution of the Euler equations taking into account surface tension forces and the unsteady filtration equation. The effect of the structural parameters of the two-layer porous medium (pore size in the layers, and the thickness and porosity of the layers) on the droplet absorption is analyzed. It is shown that the presence of the second layer can have a significant effect on the droplet absorption rate and the liquid distribution in the medium. The pore size is found to be the main parameter that governs the effect of the second layer. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 1, pp. 121–130, January–February, 2007.  相似文献   

7.
A mathematical model for the discharge of a gas-saturated liquid from cylindrical channels is developed. Two limiting cases of linear and quadratic, relations between the flow friction force and the flow velocity are considered. It is established that the process of evacuation, from a semi-infinite channel consists of two stages. In the initial stage, the flow drag can be ignored, and the process of discharge is described by a Riemann wave solution. For the next stage, in which inertia is insignificant, nonlinear equations are obtained and self-similar solutions are constructed for them. The problem of flow through a slot in a tank of finite volume is solved. It is shown that the discharge proceeds either in a gas-dynamic choking regime or in a subsonic regime, depending on the conditions inside the tank and at the outlet. Examples of numerical calculations are given. Institute of Mechanics, Ufa Scientific Center, Russian Academy of Sciences, Ufa 450000 Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 64–73, January–February, 1999.  相似文献   

8.
The present note considers two problems concerning the thermocapillary motion, due to the existence of a temperature gradient, of a weightless liquid with a parabolic dependence of the surface tension on the temperature. These problems admit self-similar solutions (in the generalized sense) within the framework of the Navier-Stokes equations. It is noted that the solution may not be unique. Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 132–137, September–October, 1988.  相似文献   

9.
The unsteady-state nonlinear problem of spreading of a drop of a viscous fluid on the horizontal surface of a solid under the action of gravity and capillary forces is considered for small Reynolds numbers. The method of asymptotic matching is applied to solve the axisymmetrical problem of spreading when the gravity exerts a significant effect on the dynamics of the drop. The flow structure in the drop is determined at large times in the neighborhood of a self-similar solution. The ranges of applicability of the quasiequilibrium model of drop spreading with a dynamic edge angle and a self-similar solution are found. It is shown that the transition from one flow model to another occurs at very large Bond numbers. Institute of Mechanics of Multiphase Systems, Siberian Division, Russian Academy of Sciences, Tyumen’ 625000. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 59–67, May–June, 1999.  相似文献   

10.
We investigate the singularity formation of a nonlinear nonlocal system. This nonlocal system is a simplified one-dimensional system of the 3D model that was recently proposed by Hou and Lei (Comm Pure Appl Math 62(4):501–564, 2009) for axisymmetric 3D incompressible Navier–Stokes equations with swirl. The main difference between the 3D model of Hou and Lei and the reformulated 3D Navier–Stokes equations is that the convection term is neglected in the 3D model. In the nonlocal system we consider in this paper, we replace the Riesz operator in the 3D model by the Hilbert transform. One of the main results of this paper is that we prove rigorously the finite time singularity formation of the nonlocal system for a large class of smooth initial data with finite energy. We also prove global regularity for a class of smooth initial data. Numerical results will be presented to demonstrate the asymptotically self-similar blow-up of the solution. The blowup rate of the self-similar singularity of the nonlocal system is similar to that of the 3D model.  相似文献   

11.
This article describes a semi-analytical model for two-phase immiscible flow in porous media. The model incorporates the effect of capillary pressure gradient on fluid displacement. It also includes a correction to the capillarity-free Buckley–Leverett saturation profile for the stabilized-zone around the displacement front and the end-effects near the core outlet. The model is valid for both drainage and imbibition oil–water displacements in porous media with different wettability conditions. A stepwise procedure is presented to derive relative permeabilities from coreflood displacements using the proposed semi-analytical model. The procedure can be utilized for both before and after breakthrough data and hence is capable to generate a continuous relative permeability curve unlike other analytical/semi-analytical approaches. The model predictions are compared with numerical simulations and laboratory experiments. The comparison shows that the model predictions for drainage process agree well with the numerical simulations for different capillary numbers, whereas there is mismatch between the relative permeability derived using the Johnson–Bossler–Naumann (JBN) method and the simulations. The coreflood experiments carried out on a Berea sandstone core suggest that the proposed model works better than the JBN method for a drainage process in strongly wet rocks. Both methods give similar results for imbibition processes.  相似文献   

12.
Evolution of convective structures in a thin layer of an evaporating liquid (ethanol) located under a turbulent boundary layer of an airflow is studied experimentally and theoretically. Evolution of the structures is examined under conditions of an increased flow velocity. A transition is found from convective cells formed in the absence of the flow to convective rolls elongated in the streamwise direction. The theoretical analysis is performed within a two-dimensional model of the flow in the liquid layer. The boundary conditions on the liquid surface are obtained with the use of self-similar solutions for mean fields in the airflow. The onset and evolution of a periodic system of rolls are simulated numerically. Theoretical conclusions are compared with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 3–14, July–August, 2007.  相似文献   

13.
It is proved that the problem of one-dimensional motion of an emulsion under the action of thermocapillary forces has a self-similar solution in a semi-infinite interval. The behavior of the solution is illustrated by numerical examples for aluminum-lead emulsions, in which the carrier phase is lead or aluminum. The solution is compared with the solution of the self-similar problem linearized in the low impurity concentration. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 61–70, September–October, 2007.  相似文献   

14.
Laboratory-scale virus transport experiments were conducted in columns packed with sand under saturated and unsaturated conditions. The viruses employed were the male-specific RNA coliphage, MS2, and the Salmonella typhimurium phage, PRD1. The mathematical model developed by Sim and Chrysikopoulos (Water Resour Res 36:173–179, 2000) that accounts for processes responsible for removal of viruses during vertical transport in one-dimensional, unsaturated porous media was used to fit the data collected from the laboratory experiments. The liquid to liquid–solid and liquid to air–liquid interface mass transfer rate coefficients were shown to increase for both bacteriophage as saturation levels were reduced. The experimental results indicate that even for unfavorable attachment conditions within a sand column (e.g., phosphate-buffered saline solution; pH = 7.5; ionic strength = 2 mM), saturation levels can affect virus transport through porous media.  相似文献   

15.
In Part I Moyne and Murad [Transport in Porous Media 62, (2006), 333–380] a two-scale model of coupled electro-chemo-mechanical phenomena in swelling porous media was derived by a formal asymptotic homogenization analysis. The microscopic portrait of the model consists of a two-phase system composed of an electrolyte solution and colloidal clay particles. The movement of the liquid at the microscale is ruled by the modified Stokes problem; the advection, diffusion and electro-migration of monovalent ions Na+ and Cl are governed by the Nernst–Planck equations and the local electric potential distribution is dictated by the Poisson problem. The microscopic governing equations in the fluid domain are coupled with the elasticity problem for the clay particles through boundary conditions on the solid–fluid interface. The up-scaling procedure led to a macroscopic model based on Onsager’s reciprocity relations coupled with a modified form of Terzaghi’s effective stress principle including an additional swelling stress component. A notable consequence of the two-scale framework are the new closure problems derived for the macroscopic electro-chemo-mechanical parameters. Such local representation bridge the gap between the macroscopic Thermodynamics of Irreversible Processes and microscopic Electro-Hydrodynamics by establishing a direct correlation between the magnitude of the effective properties and the electrical double layer potential, whose local distribution is governed by a microscale Poisson–Boltzmann equation. The purpose of this paper is to validate computationally the two-scale model and to introduce new concepts inherent to the problem considering a particular form of microstructure wherein the clay fabric is composed of parallel particles of face-to-face contact. By discretizing the local Poisson–Boltzmann equation and solving numerically the closure problems, the constitutive behavior of the diffusion coefficients of cations and anions, chemico-osmotic and electro-osmotic conductivities in Darcy’s law, Onsager’s parameters, swelling pressure, electro-chemical compressibility, surface tension, primary/secondary electroviscous effects and the reflection coefficient are computed for a range particle distances and sat concentrations.  相似文献   

16.
A problem of piston-induced displacement of one gas by another in cracks (porous media) in an axisymmetric case with a quadratic drag law is studied. Self-similar solutions for determining the dynamic characteristics (velocity and pressure) of the displacing and displaced gases are constructed in quadratures. The velocity and pressure are studied as functions of a self-similar variable for several initial conditions and parameters. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 87–92, September–October, 2008.  相似文献   

17.
A model of flow through a porous medium with phase transitions which permits an efficient qualitative investigation is proposed for two fluids with sharply different (high-contrast) mobilities. It is shown that the model problem of flow toward a unit sink is singularly perturbed and can be solved using analytic asymptotic matching methods. The nature of the singularity is associated with violation of the condition of the flow contrast in certain zones. The solution can be unstable depending on the direction of interphase mass transfer and the zone in which the process takes place. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 124–135, March–April, 2000. The work was carried out with support from the European Foundation INTAS (grant No. 94-4367) and the Russian Foundation for Basic Research (project No. 95-01-01179a).  相似文献   

18.
The problem of the jet flow of an incompressible liquid with free boundaries in an electric field is solved in the approximation of a laminar boundary layer. An exact solution for a round jet is found in the class of self-similar solutions. In the case of a flat slit jet, a solution is constructed in the form of a series in powers of the coordinate transverse to the plane of symmetry. The dependence of the radius (half-width) on the longitudinal coordinate is given. Branch of the Karpov Physicochemistry Institute, State Science Center, Obninsk 249020. Karpov Physicochemistry Institute, State Science Center, Moscow 115523. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 4, pp. 12–16, July–August, 1998.  相似文献   

19.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

20.
A numerical study is performed to analyze steady laminar forced convection in a channel in which discrete heat sources covered with porous material are placed on the bottom wall. Hydrodynamic and heat transfer results are reported. The flow in the porous medium is modeled using the Darcy–Brinkman–Forchheimer model. A computer program based on control volume method with appropriate averaging for diffusion coefficient is developed to solve the coupling between solid, fluid, and porous region. The effects of parameters such as Reynolds number, Prandtl number, inertia coefficient, and thermal conductivity ratio are considered. The results reveal that the porous cover with high thermal conductivity enhances the heat transfer from the solid blocks significantly and decreases the maximum temperature on the heated solid blocks. The mean Nusselt number increases with increase of Reynolds number and Prandtl number, and decrease of inertia coefficient. The pressure drop along the channel increases rapidly with the increase of Reynolds number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号