首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

2.
Oxidation reaction of the ground state Si atom was studied by using a crossed molecular beam technique at 13.0 kJ/mol of collision energy. The Si atomic beam was generated by laser vaporization and crossed with the oxygen molecular beam at right angle. Products at the crossing region were detected by the laser-induced fluorescence (LIF). The LIF of SiO(A 1 Pi-X 1 Sigma+) was used to determine the vibrational state distribution of the electronic ground state, SiO(X 1 Sigma+). The determined distribution was inverted with the maximum population at v"=4, and in good agreement with the recent quasiclassical trajectory calculation on the singlet potential energy surface. The agreement suggested that an abstraction mechanism is dominant at the collision energy studied here. One of the counterproducts, O(3PJ), was also observed by the vacuum ultraviolet LIF and the distribution of the spin-orbit levels were determined. The formation of O(3PJ) was consistent with the significant population of v"=7 and 8 states of SiO, which could be explained by the presence of the triplet product channel with higher exothermicity.  相似文献   

3.
4.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

5.
Quasi-classical trajectory calculations for the Si(3P)+O2(X 3Sigmag-)-->SiO(X 1Sigma+)+O(1D) reaction have been carried out using the analytical ground 1A' potential energy surface (PES) recently reported by Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)]. The reaction has been studied for a wide range of collision energies (0.005-0.6 eV) with O2 in its ground rovibrational state. The barrierless PES leads to a decrease of the total reaction cross section with increasing collision energy. It has been brought to evidence that the reaction proceeds through different reaction mechanisms whose contributions to reactivity are highly dependent on the collision energy range. At low collision energy an abstraction mechanism occurs involving the collinear SiOO potential well. The associated short-lived intermediate complex leads to an inverted vibrational distribution peaked at v'=3 and low rotational excitation of SiO(v',j') with a preferentially backward scattering. At higher energies the reaction proceeds mainly through an insertion mechanism involving the bent and linear OSiO deep potential wells and associated long-lived intermediate complexes, giving rise to nearly statistical energy disposals into the product modes and a forward-backward symmetry of the differential cross section.  相似文献   

6.
A pump-probe laser-induced fluorescence technique has been used to examine the nascent OH X (2)Pi product state distribution arising from non-reactive quenching of electronically excited OH A (2)Sigma(+) by molecular hydrogen and deuterium under single-collision conditions. The OH X (2)Pi products were detected in v'=0, 1 and 2; the distribution peaks in v'=0 and decreases monotonically with increasing vibrational excitation. In all vibrational levels probed, the OH X (2)Pi products are found to be highly rotationally excited, the distribution peaking at N'=15 when H(2) was used as the collision partner and N'=17 for D(2). A marked propensity for production of Pi(A') Lambda-doublet levels was observed, while both OH X (2)Pi spin-orbit manifolds were equally populated. These observations are interpreted as dynamical signatures of the nonadiabatic passage of the OH + H(2)/D(2) system through the seams of conical intersection that couple the excited state (2 (2)A') and ground state (1 (2)A') surfaces.  相似文献   

7.
In an attempt to explain the observed nightglow emission from OH(v=10) in the mesosphere that has the energy greater than the exothermicity of the H+O(3) reaction, potential energy surfaces were calculated for reactions of high lying electronic states of O(2)(A (3)Sigma(u) (+) and A' (3)Delta(u)) with atomic hydrogen H((2)S) to produce the ground state products OH((2)Pi)+O((3)P). From collinear two-dimensional scans, several adiabatic and nonadiabatic pathways have been identified. Multiconfigurational single and double excitation configuration interaction calculations show that the adiabatic pathways on a (4)Delta potential surface from O(2)(A' (3)Delta)+H and a (4)Sigma(+) potential surface from O(2)(A (3)Sigma(u) (+))+H are the most favorable, with the zero-point corrected barrier heights of as low as 0.191 and 0.182 eV, respectively, and the reactions are fast. The transition states for these pathways are collinear and early, and the reaction coordinate suggests that the potential energy release of ca. 3.8 eV (larger than the energy required to excite OH to v=10) is likely to favor high vibrational excitation.  相似文献   

8.
The dynamics of the O(1D) + HCl --> OH + Cl(2P) reaction are investigated by a crossed molecular beam ion-imaging method and quasiclassical trajectory calculations on the three ab initio potential energy surfaces, the ground 1(1)A' and two excited (1(1)A' and 2(1)A') states. The scattering experiment was carried out at collision energies of 4.2, 4.5, and 6.4 kcal/mol. The observed doubly differential cross sections (DCSs) for the Cl(2P) product exhibit almost no collision energy dependence over this inspected energy range. The nearly forward-backward symmetric DCS indicates that the reaction proceeds predominantly on the ground-state potential energy surface at these energies. Variation of the forward-backward asymmetry with collision energy is interpreted using an osculating complex model. Although the potential energy surfaces obtained by CASSCF-MRCI ab initio calculations exhibit relatively low potential barriers of 1.6 and 6.5 kcal/mol for 1(1)A' and 2(1)A', respectively, the dynamics calculations indicate that contributions of these excited states are small at the collision energies lower than 15.0 kcal/mol. Theoretical DCSs calculated for the ground-state reaction pathway agree well with the observed ones. These experimental and theoretical results suggest that the titled reaction at collision energies less than 6.5 kcal/mol is predominantly via the ground electronic state.  相似文献   

9.
Highly correlated coupled cluster methods with single and double excitations (CSSD) and CCSD with perturbative triple excitations were used to predict molecular structures and harmonic vibrational frequencies for the electronic ground state X 1Sigma+, and for the 3Delta, 3Sigma+, 3Phi, 1 3Pi, 2 3Pi, 1Sigma+, 1Delta, and 1Pi excited states of NiCO. The X 1Sigma+ ground state's geometry is for the first time compared with the recently determined experimental structure. The adiabatic excitation energies, vertical excitation energies, and dissociation energies of these excited states are predicted. The importance of pi and sigma bonding for the Ni-C bond is discussed based on the structures of excited states.  相似文献   

10.
The oxidation reaction dynamics of the gas-phase yttrium atoms by oxygen molecules was studied under crossed-beam conditions. The product YO was detected using a time-of-flight mass spectrometer combined with laser single-photon ionization. An acceleration lens system designed for the ion-velocity mapping conditions, a two-dimensional (2-D) detector, and a time-slicing technique were used to obtain the velocity and angular distributions of the products. Two ionization wavelengths were used for the internal (vibrational and/or electronic) energy selective detection of YO. The single photon of the shorter wavelength (202.0 nm) can ionize all states of YO(X?(2)Σ, A'?(2)Δ, and A?(2)Π), while electronically excited YO(A' and A) are dominantly ionized at a longer wavelength (285.0 nm). Time-sliced images were converted to the velocity and angular distributions in the center-of-mass frame. The general features of the velocity distributions of YO, determined at two wavelengths, were well represented by those expected from the statistical energy disposal model. The forward-backward symmetry was also observed for two images. These results suggest that the reaction proceeds via long-lived intermediates, and that this mechanism is consistent with previous chemiluminescence/LIF studies.  相似文献   

11.
Quantum dynamical calculations are reported for the title reaction, for both product arrangement channels and using potential energy surfaces corresponding to the three electronic states, 1 1A', 2 1A', and 1 1A", which correlate with both reactants and products. The calculations have been performed for J=0 using the time-dependent real wavepacket approach by Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)]. Reaction probabilities for both product arrangement channels on all three potential energy surfaces are presented for total energies between 0.1 and 1.1 eV. Product vibrational state distributions at two total energies, 0.522 and 0.722 eV, are also presented for both channels and all three electronic states. Product rotational quantum state distributions are presented for both product arrangement channels and all three electronic states for the first six product vibrational states.  相似文献   

12.
Various ab initio methods, including self-consistent field (SCF), configuration interaction, coupled cluster (CC), and complete-active-space SCF (CASSCF), have been employed to study the electronic structure of copper hydroxide (CuOH). Geometries, total energies, dipole moments, harmonic vibrational frequencies, and zero-point vibrational energies are reported for the linear 1Sigma+ and 1Pi stationary points, and for the bent ground-state X 1A', and excited-states 2 1A' and 1 1A". Six different basis sets have been used in the study, Wachters/DZP being the smallest and QZVPP being the largest. The ground- and excited-state bending modes present imaginary frequencies for the linear stationary points, indicating that bent structures are more favorable. The effects of relativity for CuOH are important and have been considered using the Douglas-Kroll approach with cc-pVTZ/cc-pVTZ_DK and cc-pVQZ/cc-pVQZ_DK basis sets. The bent ground and two lowest-lying singlet excited states of the CuOH molecule are indeed energetically more stable than the corresponding linear structures. The optimized geometrical parameters for the X 1A' and 1 1A" states agree fairly well with available experimental values. However, the 2 1A' structure and rotational constants are in poor agreement with experiment, and we suggest that the latter are in error. The predicted adiabatic excitation energies are also inconsistent with the experimental values of 45.5 kcal mol(-1) for the 2 1A' state and 52.6 kcal mol(-1) for the 1 1A" state. The theoretical CC and CASSCF methods show lower adiabatic excitation energies for the 1 1A" state (53.1 kcal mol(-1)) than those for the corresponding 2 1A' state (57.6 kcal mol(-1)), suggesting that the 1 1A" state might be the first singlet excited state while the 2 1A' state might be the second singlet excited state.  相似文献   

13.
The adiabatic potential energy surfaces for the lowest five electronic states of (3)A" symmetry for the H(+)+O(2) collision system have been obtained at the multireference configuration interaction level of accuracy using Dunning's correlation consistent polarized valence triple zeta basis set. The radial nonadiabatic coupling terms and the mixing angle between the lowest two electronic states (1 (3)A" and 2 (3)A"), which adiabatically correlate in the asymptotic limit to H((2)S)+O(2) (+)(X (2)Pi(g)) and H(+)+O(2)(X (3)Sigma(g)(-)), respectively, have been computed using ab initio procedures at the same level of accuracy to yield the corresponding quasidiabatic potential energy matrix. The computed strengths of the vibrational coupling matrix elements reflect the trend observed for inelastic vibrational excitations of O(2) in the experiments at collision energy of 9.5 eV. The quantum dynamics has been preformed on the newly obtained coupled quasidiabatic potential energy surfaces under the vibrational close-coupling rotational infinite-order sudden framework at the experimental collision energy of 9.5 eV. The present theoretical results for vibrational elastic/inelastic excitations of O(2) are in overall good agreement with the available experimental data obtained from the proton energy-loss spectra in molecular beam experiments [F. A. Gianturco et al., J. Phys. B 14, 667 (1981)]. The results for the complementary charge transfer processes are also presented at this collision energy.  相似文献   

14.
The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-).  相似文献   

15.
The reaction of dicarbon molecules in their electronic ground, C2(X1Sigma(g)+), and first excited state, C2(a3Pi(u)), with acetylene, C2H2(X1Sigma(g)+), to synthesize the 1,3-butadiynyl radical, C4H(X2Sigma+), plus a hydrogen atom was investigated at six different collision energies between 10.6 and 47.5 kJ mol(-1) under single collision conditions. These studies were contemplated by crossed molecular beam experiments of dicarbon with three acetylene isotopomers C2D2(X1Sigma(g)+), C2HD (X1Sigma+), and 13C2H2(X1Sigma(g)+) to elucidate the role of intersystem crossing (ISC) and of the symmetry of the reaction intermediate(s) on the center-of-mass functions. On the singlet surface, dicarbon was found to react with acetylene through an indirect reaction mechanism involving a diacetylene intermediate. The latter fragmented via a loose exit transition state via an emission of a hydrogen atom to form the 1,3-butadiynyl radical C4H(X2Sigma+). The D(infinity)(h) symmetry of the decomposing diacetylene intermediate results in collision-energy invariant, isotropic (flat) center-of-mass angular distributions of this microchannel. Isotopic substitution experiments suggested that at least at a collision energy of 29 kJ mol(-1), the diacetylene isotopomers are long-lived with respect to their rotational periods. On the triplet surface, the reaction involved three feasible addition complexes located in shallower potential energy wells as compared to singlet diacetylene. The involvement of the triplet surface accounted for the asymmetry of the center-of-mass angular distributions. The detection of the 1,3-butadiynyl radical, C4H(X2Sigma+), in the crossed beam reaction of dicarbon molecules with acetylene presents compelling evidence that the 1,3-butadiynyl radical can be formed via bimolecular reactions involving carbon clusters in extreme environments such as circumstellar envelopes of dying carbon stars and combustion flames.  相似文献   

16.
Oxygen Rydberg time-of-flight spectroscopy was used to study the vacuum ultraviolet photodissociation dynamics of N(2)O near 130 nm. The O((3)P(J)) products were tagged by excitation to high-n Rydberg levels and subsequently field ionized at a detector. In agreement with previous work, we find that O((3)P(J)) formation following excitation to the repulsive N(2)O D((1)Sigma(+)) state produces the first two electronically excited states of the N(2) counterfragment, N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)). The O((3)P(J)) translational energy distribution reveals that the overall branching ratio between N(2)(A (3)Sigma(u) (+)) and N(2)(B (3)Pi(g)) formation is approximately 1.0:1.0 for J = 1 and 2, with slightly less N(2)(B (3)Pi(g)) produced in coincidence with O((3)P(0)). The angular distributions were found to be independent of J and highly anisotropic, with beta = 1.5+/-0.2.  相似文献   

17.
The ThO(+) cation is of interest as it is a useful prototype for experimental and theoretical studies of bonding in a simple actinide compound. Formally the ground state of ThO(+) has the configuration Th(3+)(7s)O(2-), where there is a single unpaired electron associated with a closed-shell Th(4+)-ion core. The first tier of excited states above the X (2)Sigma(+) ground state is expected to be 1 (2)Delta, 1 (2)Pi, and 2 (2)Sigma(+) derived from the Th(3+)(6d)O(2-) configuration. Spectroscopic observations of ThO(+) using the pulsed field ionization-zero kinetic-energy photoelectron technique are reported here. Rotationally resolved spectra were recorded for the X (2)Sigma(+), 1 (2)Delta, and 1 (2)Pi states. Extensive vibrational progressions were observed. Surprisingly, it was found that ionization of ThO decreases the dissociation energy, while increasing the vibrational frequency and decreasing the bond length. Accurate values for the ionization energies of ThO [53 253.8(2) cm(-1)] and Th [50 868.71(8) cm(-1)] were determined as part of this investigation.  相似文献   

18.
We present for the first time an exact quantum study of spin-orbit-induced intersystem crossing effects in the title reaction. The time-dependent wave-packet method, combined with an extended split operator scheme, is used to calculate the fine-structure resolved cross section. The calculation involves four electronic potential-energy surfaces of the 1A' state [J. Dobbyn and P. J. Knowles, Faraday Discuss. 110, 247 (1998)], the 3A' and the two degenerate 3A" states [S. Rogers, D. Wang, A. Kuppermann, and S. Wald, J. Phys. Chem. A 104, 2308 (2000)], and the spin-orbit couplings between them [B. Maiti, and G. C. Schatz, J. Chem. Phys. 119, 12360 (2003)]. Our quantum dynamics calculations clearly demonstrate that the spin-orbit coupling between the triplet states of different symmetries has the greatest contribution to the intersystem crossing, whereas the singlet-triplet coupling is not an important effect. A branch ratio of the spin state Pi32 to Pi12 of the product OH was calculated to be approximately 2.75, with collision energy higher than 0.6 eV, when the wave packet was initially on the triplet surfaces. The quantum calculation agrees quantitatively with the previous quasiclassical trajectory surface hopping study.  相似文献   

19.
The vacuum ultraviolet laser-induced fluorescence technique was employed to detect the oxygen atoms formed by the reaction, Al+O(2)--> AlO+O. The measurements were carried out under the crossed-beam condition at 12.2 kJmol of collision energy. The relative populations of three spin-orbit states of O((3)P(J)) were determined to be 3.8, 1.0, and 0.2 for J=2, 1, and 0, respectively. They show nonstatistical populations, i.e., more population in O((3)P(2)) and less population in O((3)P(0)) than the statistical expectation. These populations were almost identical for two Al beam conditions where the relative concentrations of two spin-orbit states of Al, (2)P(1/2), and (2)P(3/2), are different. These results suggest that the reaction of Al with O(2) proceeds via an intermediate complex where the memory of the initial spin-orbit state is lost. Deviation from the statistical population of O((3)P(J)) implies the occurrence of the interaction among potential surfaces in the exit channel.  相似文献   

20.
High-level ab initio potential-energy curves and transition dipole moments for the OH X 2Pi, 2 2Pi, 1 2Sigma-, D 2Sigma-, 3 2Sigma-, A 2Sigma+, B 2Sigma+, 1 2Delta, 1 4Sigma-, and 1 4Pi states are computed. The results are used to estimate the (2+1) resonance enhanced multiphoton ionization spectrum for the (D,3)2Sigma-(upsilon')<--2hnuX 2Piupsilon") transitions, which are compared with experiments by Greenslade et al. [see M. E. Greenslade, M. I. Lester, D. C. Radenovic, J. A. van Roij, and D. H. Parker, J. Chem. Phys. 123, 074309 (2005), preceeding paper]. We use the discrete variable representation-absorbing boundary condition method to incorporate the effect of the dissociative intermediate 1 2Sigma- state. We obtain qualitative agreement with experiment for the line strengths. Radiative and predissociative decay rates of the Rydberg (D,3)2Sigma- states of OH and OD were computed, including spin-orbit coupling effects and the effect of spin-electronic and gyroscopic coupling. We show that the lifetime of the Rydberg 2Sigma- states for rotationally cold molecules is limited mainly by predissociation caused by spin-orbit coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号