首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Using a two-center Lennard-Jones (2CLJ) model, the simplest anisotropic case, we investigated how anisotropy affects global minimum structures of clusters and obtained some interesting results. The anisotropy parameter, R, is defined as the ratio of the bond length of 2CLJ dimer to the LJ equilibrium pair separation, where a larger R value means higher anisotropy. For low R values, the structures resemble those of the Lennard-Jones atomic clusters. However, as the pairwise interaction becomes more anisotropic, the "magic numbers" change, and several novel cluster patterns emerge as particularly stable structures, and the global minima change from icosahedral, to polyicosahedral and to novel irregular structures. Moreover, increasing the anisotropy effectively softens the 2CLJ potential. Given the general importance of the LJ cluster as a simple model cluster, 2CLJ model can provide a straightforward and useful analysis of the effect of molecular shape on the structures of clusters.  相似文献   

2.
We study light scattering by sodium clusters generated in a metal cell [3] and subjected to an external electrostatic field. Scattered laser light intensities at right angle to the incoming laser beam and with polarization parallel I V and perpendicular I H to that of the laser show two maxima as a function of the electrostatic field (potential of electrode): the central maximum CM for the zero field (V = 0) and the side maximum SM for ca. -60 V (field strength 2400 V/m). This behavior can be understood on the basis of the Mie scattering theory by taking into account electrostatic charging of clusters due to the laser light ionization of the medium (Na2 molecules). The presented model leads to the conclusion that the electrostatic field changes cluster size, mainly due to the influence on the supersaturation of the medium. Clusters are charged with charge proportional to the cluster radius, only at SM clusters are neutral (zero charge). For electrode potential higher than SM clusters are positively charged, for smaller potential (more negative than SM) clusters are negatively charged.  相似文献   

3.
Grauel P  Varela H  Krischer K 《Faraday discussions》2001,(120):165-78; discussion 197-213
Pattern formation during the oscillatory oxidation of H2 on Pt ring-electrodes in the presence of electrosorbing ions was studied under potentiostatic control for three different positions of the reference electrode (RE). The position of the RE crucially affects the degree of the global feedback which is imposed by the potentiostatic operation mode, and the three configurations selected corresponded to zero, maximum and intermediate global coupling. In the absence of global coupling, 'communication' among different positions occurs exclusively through migration coupling (the electrochemical counterpart to diffusion in reaction-diffusion systems). In this case, spatially inhomogeneous oscillations that were attributed to a spatial bifurcation of the homogeneous limit cycle were observed throughout. This implies that the system is Benjamin-Feir unstable. For the strongest global coupling adjustable, travelling pulses were found that emerged in a wave bifurcation with n = 1 from the homogeneous steady state. The pulses exhibited modulations in velocity and width that most likely resulted from the interaction between inhomogeneities of the catalytic surface and the nonlinear reaction dynamics. In the case of an intermediate global coupling strength, a diversity of spatio-temporal motions was observed. The dynamics ranged from pulses over target patterns and so-called asymmetric target patterns to mixed states where two or three of these states alternate. For some parameters these mixed states were in addition separated by bursts of the system to a nearly homogeneous unreactive state.  相似文献   

4.
We studied the self-assembling of linear chain molecules in insoluble monolayers due to attractive interactions. We used lattice Monte Carlo simulations in a two-dimensional system. The molecules consist of segments occupying adjacent lattice sites. The head segments are confined to move along a line whereas the chain segments can arrange in a plane above the heads. Only one interaction parameter is applied. At high densities and small interaction energy the system shows percolation behavior. At moderate and small densities it can be characterized by a monotonous cluster size distribution. Self-assembling occurs at small densities for strong attractive interactions. The corresponding cluster size distributions indicate preferred cluster sizes which depend upon density and interaction strength. With increasing density the clusters grow. The internal cluster structure depends on the cluster size and the interaction parameter. The clusters tend to minimize their total energy. Molecules at cluster margins contribute less to the cluster energy and are mainly disordered. They cause that the cluster properties strongly depend on the cluster size. Large clusters only have minimum energy if the molecules in the cluster are in stretched-out conformation. With decreasing interaction strength the clusters get disordered thereby producing less energy-minimized domain boundaries.  相似文献   

5.
Likely candidates for the lowest minima of water clusters (H(2)O)(N) for N ≤ 20 interacting with a uniform electric field strength in the range E ≤ 0.6 V/? have been identified using basin-hopping global optimization. Two water-water model potentials were considered, namely TIP4P and the polarizable Dang-Chang potential. The two models produce some consistent results but also exhibit significant differences. The cluster internal energy and dipole moment indicate two varieties of topological transition in the structure of the global minimum as the field strength is increased. The first takes place at low field strengths (0.1 V/? 10) usually forming helical structures.  相似文献   

6.
It is well known that the iR compensation is very important in electrochemistry, especially in fast, ultra-fast and transient voltammetry for kinetic and mechanistic studies. The modern design of potentiostat is usually of the three-electrode system, in w…  相似文献   

7.
A reference hydrogen electrode systems is constructed by employing a strip of proton‐type Nafion membrane as an ion‐conducting “bridge” to connect a reversible hydrogen electrode (RHE) in an acidic solution to an electrochemical system using pure water as electrolyte, in which the working electrode (WE) is placed. Using such a reference electrode system, the potential at the “WE/pure water” interface is equal to the equilibrium hydrogen electrode potential in pure water when the potential difference between RHE and WE is zero, irrespective of the pH value of the acidic solution in the RHE compartment. The accuracy and reproducibility of the WE potential measurements are within 1–2 mV.  相似文献   

8.
An unbiased algorithm for determining global minima of Lennard-Jones (LJ) clusters is proposed in the present study. In the algorithm, a global minimum is searched by using two operators: one modifies a cluster configuration by moving atoms to the most stable positions on the surface of a cluster and the other gives a perturbation on a cluster configuration by moving atoms near the center of mass of a cluster. The moved atoms are selected by employing contribution of the atoms to the potential energy of a cluster. It was possible to find new global minima for LJ506, LJ521, LJ536, LJ537, LJ538, and LJ541 together with putative global minima of LJ clusters of 10-561 atoms reported in the literature. This indicates that the present method is clever and efficient for cluster geometry optimization.  相似文献   

9.
This article presents the results obtained using an unbiased Population Based Search (PBS) for optimizing Lennard-Jones clusters. PBS is able to repeatedly obtain all putative global minima, for Lennard-Jones clusters in the range 2 < or = N < or = 372, as reported in the Cambridge Cluster Database. The PBS algorithm incorporates and extends key techniques that have been developed in other Lennard-Jones optimization algorithms over the last decade. Of particular importance are the use of cut-and-paste operators, structure niching (using the cluster strain energy as a metric), two-phase local search, and a new operator, Directed Optimization, which extends the previous concept of directed mutation. In addition, PBS is able to operate in a parallel mode for optimizing larger clusters.  相似文献   

10.
The mechanism of oxidative coupling of two naphthol molecules to form binaphthol catalyzed by Cu(OH)ClTMEDA (TMEDA=N,N,N',N'-tetramethylethylenediamine) was approached by means of a gas-phase model system. Concise evidence is provided that the coupling reaction proceeds in clusters with two Cu(II) centers, whereby the intermediacy of free naphthoxy radicals in the coupling step is avoided. In the absence of TMEDA, the cluster is bound via a bridging counterion and the coupling reaction is followed by cluster cleavage. The coordination of one or two TMEDA molecules to the reactive complex results in more efficient coupling of naphthol molecules, and moreover, the binuclear cluster is also conserved after the reaction is completed. The effect of TMEDA is twofold: First, it supports clustering of copper and, second, as a ligand bound to a copper center in the reactive complex, it weakens the bond between copper and the naphtholato ligand such that the naphtholato unit is more prone to undergo C--C coupling. Furthermore, a pronounced counterion effect is found that correlates well with condensed-phase data: weakly bridging counterions (e.g., NO3(-)) yield less stable dicopper clusters and the coupling reaction hardly occurs, whereas better bridging counterions (e.g., Cl(-) or Br(-)) provide more stable clusters that make the coupling reaction more efficient.  相似文献   

11.
Experiments are carried out in dual electrode oscillatory Ni electrodissolution in which the two electrodes have different surface areas. The transition to phase synchronization is analyzed as asymmetrical coupling strength, induced by placing a cross resistance between the electrodes, is varied. It is shown that because of nonisochronicity (phase shear, i.e., strong dependence of period on amplitude) of the oscillators, anomalous phase synchronization effects can be observed: advanced/delayed synchronization and, to a lesser extent, frequency difference enhancement. The type of synchronization is strongly affected by the underlying heterogeneities of the oscillators; in the experiments with a slow driver (large surface area) electrode the synchronization is advanced, with a fast driver electrode the synchronization is delayed with respect to symmetrical coupling. The findings thus reveal that the interplay of asymmetrical coupling with the types of inherent heterogeneities plays an important role for the interpretation of size effects in the dynamical behavior of a nonlinear chemical reaction.  相似文献   

12.
根据铂电极上硫化物电催化氧化的反应机理,本文提取动力学模型并利用数值模拟研究了N型负微分阻抗(N-NDR)振荡区域的电极表面时空反应动力学.在均相体系模拟中观察到电流简单振荡和复杂振荡,其来源于双电层电势自催化与传质限制和毒化物种吸附负反馈的相互耦合.为了更接近于真实体系,在模型中考虑了平行和垂直于电极表面两个方向的传质过程.模拟结果发现了与实验现象具有相同演化行为的复杂斑图,如行波和闪烁波;同时在传质耦合体系模拟中观察到双电层电势双臂螺旋波.本研究工作促进对电化学体系时空斑图的理解和预测.  相似文献   

13.
14.
The structures and vibrational spectra of the intermolecular complexes formed by insertion of substituted formaldehyde molecules HRCO (R = H, Li, F, Cl) into cyclic hydrogen fluoride and water clusters are studied at the MP2/aug-cc-pVTZ computational level. Depending on the nature of the substituent R, the cluster type, and its size, the C-H stretching modes of HRCO undergo large blue and partly red shifts, whereas all the F-H and O-H stretching modes of the conventional hydrogen bonds are strongly red-shifted. It is shown that (i) the mechanism of blue shifting can be explained within the concept of the negative intramolecular coupling between C-H and C=O bonds that is inherent to the HRCO monomers, (ii) the blue shifts also occur even if no hydrogen bond is formed, and (iii) variation of the acceptor X or the strength of the C-H...X hydrogen bond may either amplify the blue shift or cause a transition from blue shift to red shift. These findings are illustrated by means of intra- and intermolecular scans of the potential energy surfaces. The performance of the negative intramolecular coupling between C-H and C=O bonds of H(2)CO is interpreted in terms of the NBO analysis of the isolated H(2)CO molecule and H(2)CO interacting with (H2O)n and (HF)n clusters.  相似文献   

15.
The ZrSi(n) (n=1-16) clusters with different spin configurations have been systematically investigated by using the density-functional approach. The total energies, equilibrium geometries, growth-pattern mechanisms, natural population analysis, etc., are discussed. The equilibrium structures of different-sized ZrSi(n) clusters can be determined by two evolution patterns. Theoretical results indicate that the most stable ZrSi(n) (n=1-7) geometries, except ZrSi3, keep the analogous frameworks as the lowest-energy or the second lowest-energy Si(n+1) clusters. However, for large ZrSi(n) (n=8-16) clusters, Zr atom obviously disturbs the framework of silicon clusters, and the localized position of the transition-metal (TM) Zr atom gradually varies from the surface insertion site to the concave site of the open silicon cage and to the encapsulated site of the sealed silicon cage. It should be mentioned that the lowest-energy sandwich-like ZrSi12 geometry is not a sealed structure and appears irregular as compared with other TM@Si12 (TM = Re,Ni). The growth patterns of ZrSi(n) (n=1-16) clusters are concerned showing the Zr-encapsulated structures as the favorable geometries. In addition, the calculated fragmentation energies of the ZrSi(n) (n=1-16) clusters manifest that the magic numbers of stabilities are 6, 8, 10, 14, and 16, and that the fullerene-like ZrSi16 is the most stable structure, which is in good agreement with the calculated atomic binding energies of ZrSi(n) (n=8-16) and with available experimental and theoretical results. Natural population analysis shows that the natural charge population of Zr atom in the most stable ZrSi(n) (n=1-16) structures exactly varies from positive to negative at the critical-sized ZrSi8 cluster; furthermore, the charge distribution around the Zr atom appears clearly covalent in character for the small- or middle-sized clusters and metallic in character for the large-sized clusters. Finally, the properties of frontier orbitals and polarizabilities of ZrSi(n) are also discussed.  相似文献   

16.
Magnetic Cu4 clusters with S = 2 are bridged by octacyanometaltate(IV) to form two 3D cluster arrays of metal-organic frameworks. Magnetic investigation shows the ferromagnetic coupling between Cu(II) ions and very weak antiferromagnetic interaction between clusters.  相似文献   

17.
Xu JJ  Peng Y  Bao N  Xia XH  Chen HY 《Electrophoresis》2005,26(19):3615-3621
In the present paper, we describe a microfluidics-based sensing system for nonelectroactive anions under negative separation electric field by mounting a single carbon fiber disk working electrode (WE) in the end part of a poly(dimethylsiloxane) microchannel. In contrast to work in a positive separation electric field described in our previous paper (Anal. Chem. 2004, 76, 6902-6907), here the electrochemical reduction reaction at the WE is not coupled with the separation high-voltage (HV) system, whereas the electrochemical oxidation reaction at the WE is coupled with the separation HV system. The electroactive indicator is the carbon fiber WE itself but not dissolved oxygen. This provides a convenient and sensitive means for the determination of nonelectroactive anions by amperometry. The influences of separation voltage, detection potential, and the distance between the WE and the separation channel outlet on the response of the detector have been investigated. The present detection mode is successfully used to electrochemically detect F-, Cl-, SO4(2-), CH3COO-, H2PO4-. Based on the preliminary results, a detection limit of 2 microM and a dynamic range up to three orders of magnitude for Cl- could be achieved.  相似文献   

18.
Helium droplet technique has been used in order to measure the strength of the infrared absorption in small ammonia and water clusters as a function of size. Hydrogen bonding in ammonia and water dimers causes an enhancement of the intensity of the hydrogen stretching bands by a factor of four and three, respectively. Two types of the hydrogen bonded clusters show different size dependence of the infrared intensity per hydrogen bond. In ammonia (NH3)2 and (NH3)3 it is close to the crystal value. In water clusters, it increases monotonically with cluster size being in tetramers, a factor of two smaller than in the ice. The measured infrared intensity in water clusters is found to be a factor of two to three smaller as compared to the results of numerical calculations.  相似文献   

19.
Geometry optimization of ethane clusters (C(2)H(6))(n) in the range of n ≤ 25 is carried out with a Morse potential. A heuristic method based on perturbations of geometries is used to locate global minima of the clusters. The following perturbations are carried out: (1) the molecule or group with the highest energy is moved to the interior of a cluster, (2) it is moved to stable positions on the surface of a cluster, and (3) orientations of one and two molecules are randomly modified. The geometry obtained after each perturbation is optimized by a quasi-Newton method. The global minimum of the dimer is consistent with that previously reported. The putative global minima of the clusters with 3 ≤ n ≤ 25 are first proposed and their building-up principle is discussed.  相似文献   

20.
The gold-ammonia bonding patterns of the complexes which are formed between the ammonia clusters (NH(3))(1< or =n< or =3) and gold clusters of different sizes that range from one gold atom to the tri-, tetra-, and 20-nanogold clusters are governed by two basic and fundamentally different ingredients: the anchoring Au-N bond and the nonconventional N-H...Au hydrogen bond. The latter resembles, by all features, a conventional hydrogen bond and is formed between a typical conventional proton donor N-H group and the gold cluster that behaves as a nonconventional proton acceptor. We provide strong computational evidence that the gold-ammonia bonding patterns exhibit distinct characteristics as the Z charge state of the gold cluster varies within Z=0,+/-1. The analysis of these bonding patterns and their effects on the N-H...N H-bonded ammonia clusters are the subject of this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号