首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heats of adsorption of CO2 and NH3 were studied for sodium, lithium, calcium and decationized forms of natural mordenites. The exchange of Na+ for Ca2+ leads to increasing adsorption heats at low coverages. For CO2 the region of elevated heats corresponds to the formation of Ca2+ ... CO2 adsorption complexes. Two molecules of NH3 probably interact with each Ca2+ ion (or with the Li+ ions in Li-mordenite). The heats of adsorption of NH3 on decationized mordenite are much higher than those on calcium mordenite.
Zusammenfassung Adsorptionswärmen von CO2 und NH3 an der Na-, Li-, Ca- und dekationisierten Form von natürlichem Mordenit wurden bestimmt. Der Austausch von Na+ gegen Ca2+ führt zu einer Erhöhung der Adsorptionswärmen bei geringen Bedeckungen. Bei CO2 erfolgt im Bereich hoher Adsorptionswärmen die Bildung des Adsorptionskomplexes Ca2+ ...CO2. Mit jedem Ca2+-Ion (bzw. Li+-Ion im Li-Mordenit) treten wahrscheinlich zwei NH3-Moleküle in Wechselwirkung. An dekationisiertem Mordenit sind die Adsorptionswärmen von NH3 höher als an Ca-Mordenit.

, , . . Ca2+ ... CO2. B , , ( -). , -.


The authors would like to thank Dr. I. A. Belitsky for supplying the sample of natural mordenite. They also thank Professor S. P. Zhdanov for his interest and encouragement of this work.  相似文献   

2.
3.
The low temperature adsorption of CO and the room temperature adsorption of acetonitrile, propionitrile, isobutyronitrile, pivalonitrile, benzonitrile, and o-toluonitrile on Na-mordenite (NaMOR) have been investigated by Fourier transform infrared (FT-IR) spectroscopy. The results have been compared with analogous experiments performed on H-mordenite, Na-X zeolite, and Na-silica-alumina. The Na distribution in NaMOR has also been investigated by X-ray diffraction and far-IR spectroscopy. The conclusions are that Na+ ion distribution is essentially random and that, together with the well-known interaction of the probes with Na+ ions in the side pockets and the main channels, a stronger additional interaction occurs in all cases. This new interaction is likely multiple, involving either more Na+ ions or Na and oxygen species. This interaction is more pronounced with the hindered nitriles, whose access at the main channels is likely forbidden. This suggests that this interaction, which is also observed on Na-X zeolites but not with Na-silica-alumina, occurs at the external mouths of the mordenite channels.  相似文献   

4.
5.
Alumina-supported vanadium particles were prepared under ultrahigh vacuum (UHV) conditions and characterized with respect to their structural and CO adsorption properties. As supporting oxide, we used a thin, well-ordered alumina film grown on NiAl(110). This allows the application of scanning tunneling microscopy (STM), infrared reflection-absorption spectroscopy (IRAS), and X-ray photoelectron spectroscopy (XPS) without charging effects. Vanadium evaporation under UHV conditions leads to the growth of nanometer-sized particles which strongly interact with the alumina support. At very low vanadium coverages, these particles are partially incorporated into the alumina film and get oxidized through the contact to alumina. Low-temperature CO adsorption in this coverage regime permits the preparation of isolated vanadium carbonyls, of which we have identified mono-, di-, and tricarbonyls of the V(CO)(y)() type. A charge-frequency relationship was set up which allows one to quantify the extent of charge transfer from vanadium to alumina. It turns out that this charge transfer depends on the V nucleation site.  相似文献   

6.
Density functional theory (DFT) calculations of energetic, geometric, vibrational, and electrostatic properties of different arrangements of CO and NO at quarter and half monolayer coverage on Pt(111) are presented. Differences in the extents of electron back-donation from the Pt surface to these molecules cause the low-coverage adsorbate dipoles to have opposite signs at atop and more highly coordinated bridge or fcc sites. These dipoles of opposite sign occupy adjacent positions in the experimentally observed atop-bridge or atop-fcc high -coverage arrangements, leading to attractive electrostatic interactions and concomitant changes in dipole moments, bond lengths, and vibrational frequencies. The interaction energies are estimated by charge partitioning to extract individual dipoles from the mixed arrangement and by calculations of field-dipole interactions. These estimated dipole interactions contribute significantly (20-60%) to the DFT-calculated relative stability of mixed arrangements over atop-, bridge-, or fcc-only arrangements and thus play an important role in coverage-dependent adsorption. We further extend these analyses to a range of molecules with varying dipole moments and show that the general nature of these interactions is not limited to CO and NO.  相似文献   

7.
8.
9.
CO adsorption at low temperature has been used to probe Lewis acid sites created upon dehydroxylation of γ-Al2O3 and reduction of Mo/Al2O3 catalysts, using Fourier Transform Infrared spectroscopy (FTIR). Carbon-monoxide adsorption on γ-Al2O3 and Mo/Al2O3 catalysts dehydroxylated and reduced at different temperatures was studied at 78 K by IR spectroscopy. However, our results indicate that there is an approximately linear correlation between the increase either of dehydroxylation or the extent of reduction of the catalysts and the increasing absorbance of CO due to CO adsorption on Lewis acid sites created upon dehydroxylation of γ-Al2O3 and reduction of Mo/Al2O3.  相似文献   

10.
11.
Structures, energetics and vibrational frequencies of the interaction of adsorbates with H-aluminosilicates (H-AlZ), H-gallosilicates (H-GaZ), alkali-metal exchanged aluminosilicates (X-AlZ) and alkali-metal exchanged gallosilicates (X-GaZ), where X being Li, Na, or K, have been carried out at B3LYP and HF levels of theory with 6-31G(d) as the basis set. The charge compensating alkali-metal ions can affect the catalytically active site (Si–O–T where T=Al or Ga) by weakening the Si–O, Al–O, and Ga–O bonds as compared to their anionic frameworks. Comparing the net stabilization energies, ΔENSE, of the naked alkali-metal/H2O adducts with those of the alkali-metal exchanged zeolite/H2O systems, the latter amounts only to about 50% of the former, which is partly due to the destabilizing role of the negative zeolitic oxygen frameworks surrounding the cations. The interaction of sorbates with the alkali-metal exchanged gallosilicates can be employed to probe the field strength inside the catalytic frameworks as indicated by the plot of the binding energy, ΔE, versus 1/RX–Ow2, with R(X–Ow) being the distance between the cationic nucleus and the oxygen atom of the adsorbate. The IR spectra of H2O adsorbed on Na-AlZ are calculated to be 3584, 3651, and 1686 cm−1. The obtained results are in excellent agreement with the very recent experimental IR spectra of water adsorbed on Na-ZSM-5 of Zecchina et al. (J. Phys. Chem., 100 (1996) 16 484). Other important features, i.e. the correlation between ΔνOH and, ΔE, R(X–Ow), and 1/RX–Ow2, cationic size, demonstrate that the interactions of sorbates with alkali-metal exchanged gallosilicates are well approximated by electrostatic contribution.  相似文献   

12.
13.
14.
15.
Inelastic neutron scattering (INS) as well as infrared (IR) transmission and diffuse reflection infrared Fourier transform (DRIFT) spectra of furan adsorbed on Li-LSX, NaY, NaX, K-LSX, and CsNaX zeolites have been measured in the range 2000-200 and 4000-1300 cm(-1), respectively. On the basis of an assignment of normal modes of furan taken from the literature and our own quantum chemical calculations of vibrational frequencies, the observed frequency shifts between bulk furan and furan adsorbed on the zeolites mentioned above have been interpreted in view of the interactions between furan and zeolite. For an explanation of frequency shifts of CH out-of-plane bendings, CH stretchings and some ring vibrations, it has to be assumed that in addition to the interaction between furan and the corresponding cation of the zeolite, a further interaction between the CH bonds and lattice oxygen atoms exists.  相似文献   

16.
Adsorption of toxic CO molecule on single-walled aluminum nitride nanotubes (AlNNTs) was investigated using density functional theory calculations. A detailed analysis of the energetic, geometry, and electronic structure of various CO adsorptions on the tube exterior surface was performed. In contrast to carbon and BN nanotubes, our results indicated that AlNNTs can strongly interact with CO molecules. The adsorption energy of the most stable configuration was calculated to be about −0.25 eV. The Morokuma–Kitaura decomposition for molecular interaction energies was used to investigate the nature of C–Al bond in the most stable CO–AlNNT complex, demonstrating that electrostatic forces and polarization term are basic factors of attractive interaction between CO and AlNNT. They provide 37.9 and 40.4% of attractive interaction and charge transfer energies make a little contribution to the adsorption energy of CO.  相似文献   

17.
Sulfur is known to be a poison to several catalytic reactions, e.g., the Fischer-Tropsch synthesis (FTS), in which it affects drastically the performance of both iron- and cobalt-based catalysts. However, despite the importance of this industrial process, little is known about what elementary steps are poisoned by sulfur. In the present article, we report, using density functional theory, the effect of sulfur on one of the most relevant reactions in the FTS: the dissociation of carbon monoxide over iron surfaces. We have studied the adsorption and dissociation of CO on Fe(100)-S-p(2 x 2) (theta(S) = 0.25 ML) and on Fe(100)-S-c(2 x 2) (theta(S) = 0.50 ML). We have found surface configurations that correlate well with the desorption features observed in temperature-programmed desorption mass spectroscopy. In addition, we have calculated the activation energy of CO dissociation on Fe(100)-S-p(2 x 2), which, interestingly, is very similar to the activation energy of CO dissociation on the sulfur-free Fe(100) surface. However, the sign of the reaction changes by the presence of sulfur; CO dissociation is highly exothermic on the sulfur-free Fe(100) surface, whereas on the Fe(100)-S-p(2 x 2) surface, it is slightly endothermic. Moreover, according to our results, the influence of sulfur in the CO dissociation seems to be short-ranged.  相似文献   

18.
Detailed understanding of weak solid-gas interactions giving rise to reversible gas adsorption on zeolites and related materials is relevant to both, fundamental studies on gas adsorption and potential improvement on a number of (adsorption based) technological processes. Combination of variable-temperature infrared spectroscopy with theoretical calculations constitutes a fruitful approach towards both of these aims. Such an approach is demonstrated here (mainly) by reviewing recent studies on hydrogen and carbon monoxide adsorption (at a low temperature) on alkali-metal exchanged ferrierite. However, the methodology discussed, which involves the interplay of experimental measurements and theoretical calculations at the periodic DFT level, should be equally valid for many other gas-solid systems. Specific aspects considered are the identification of gas adsorption complexes and thermodynamic studies related to standard adsorption enthalpy and entropy.  相似文献   

19.
We now report the formation and characterization of water-soluble hetero-capsules 1·2 resulting from the ionic interactions between positively charged flexible aniline hydrochloride 1 and negatively charged phosphonate 2 having rigid homooxacalix[3]arene units. The formation of the molecular capsules was studied by NOESY, DOSY NMR spectroscopy and ESI-Mass spectrometry. The water solubility of the capsules is improved by the introduction of mono- or triethylene glycol substituents in the homooxacalix[3]arene-based phosphonate units 2.  相似文献   

20.
This work demonstrates how electrostatic interactions, described in terms of the classical DLVO theory, influence colloid particle deposition phenomena at solid/liquid interfaces. Electrostatic interactions governing particle adsorption in both non-polar and polar media (screened interactions) are discussed. Exact and approximate methods for calculating the interaction energy of spherical and non-spherical (anisotropic) particles are presented, including the Derjaguin method. Phenomenological transport equations governing particle deposition under the linear regime are discussed with the limiting analytical expressions for calculating initial flux. Non-linear adsorption regimes appearing for higher coverage of adsorbed particles are analysed. Various theoretical approaches are exposed, aimed at calculating blocking effects appearing due to the presence of adsorbed particles. The significant role of coupling between bulk transport and surface blocking is demonstrated. Experimental data obtained under well-defined transport conditions, such as diffusion and forced convection (impinging-jet cells), are reviewed. Various experimental techniques for detecting particles at interfaces are discussed, such as reflectometry, ellipsometry, streaming potential, atomic force microscopy, electron and optical microscopy, etc. The influence of ionic strength and flow rate on the initial particle deposition rate (limiting flux) is presented. The essential role of electrostatic interactions in particle deposition on heterogeneous surfaces is demonstrated. Experimental data pertinent to the high-coverage adsorption regime are also presented, especially the dependence of the maximum coverage of particles and proteins on the ionic strength. The influence of lateral electrostatic interactions on the structure of particle monolayers is elucidated, and the links between colloid and molecular systems are pointed out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号