首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunoanalysis of blood cells on a microcapillary electrophoresis (nuCE) chip has been studied using sheep erythrocytes (ShE) as an example. Two different buffer solutions, the phosphate-buffered saline (PBS) and the gelatin veronal buffer (GVB) were examined in regard to the electrokinetic transport behavior of ShE suspended in these solutions inside the rectangular channel engraved on a quartz chip. This clarified two advantages of the use of GVB for on-chip cell electrophoresis: gelatin coatings prevent (i) nonspecific sticking of ShE on the channel wall, and cause (ii) an appreciable reduction in the zeta potential of the wall suppressing the electroosmotic flow of the buffer solution. As a result ShE suspended in the GVB can smoothly migrate from the cathode to the anode, which is the opposite flow direction of immunoglobulin G (IgG) antibodies under the physiological pH condition of 7.4. Based on these results, on-chip capillary cell immunoelectrophoresis of ShE and rabbit anti ShE antibodies (IgG) have been proposed and successfully accomplished using the GVB. It is demonstrated that the variation of the cell migration velocity originating from the change in the surface charge after binding antibodies is applicable to the fast detection of immune reactions and also to single-cell typing.  相似文献   

2.
A chip which allows the detection of various human health markers from a trace amount of blood has been studied. As a goal, a microcapillary with a 30 x 30 microm cross-section was fabricated using all-dry etching technologies on a 2 x 2 cm SiO2 chip. The coating of the biocompatible 2-methacryloyloxyethylphosphorylcholine (MPC) polymer on the inner quartz wall of the microcapillary demonstrated a sufficiently long adsorption suppression of proteins in the serum on the quartz surface, while rapid stopping occurred for serum injected into the microcapillary with a bare quartz surface. The latter rapid stopping corresponded well to fast electroosmosis flow due to the negatively increasing zeta-potential by the adsorption of proteins on the quartz surface. The electroosmosis pump arranged a downstream of the microcapillary was also developed to inject serum into it. As a preliminary application, a given concentration-standard solution was injected into the ion-sensitive field-effect transistor (ISFET) embedded in the chip, employing the electroosmosis pump arranged downstream of the sensor position. Hence, the pH and Na+ and K+ cation concentrations were measured.  相似文献   

3.
孙悦  沈志滨  曾常青 《色谱》2007,25(5):690-693
随着微芯片技术的成熟,越来越迫切地需要有一个准确而简洁的电渗流速度的检测方法。根据荧光物质罗丹明123(Rh123)在不同pH缓冲溶液中迁移时间的变化,推导出Rh123在pH 9和10条件下分别有中性分子存在,而中性分子的移动速度等于电渗流速度,因此建立了直接以Rh123中性分子为标记物测定电渗流速度的方法。通过直接检测Rh123中性分子的迁移时间,计算得出所用玻璃微流控芯片在pH 9.3和pH 10.1的电渗流速度为3.9×10-4 cm2/(s·V)和4.1×10-4 cm2/(s·V),与经典方法对照无明显差异。  相似文献   

4.
An improved capillary electrophoresis indirect chemiluminescence system was employed for the determination of chlorogenic acid and rutin in cigarette samples. After being separated by capillary electrophoresis, the analyte zones were determined by indirect chemiluminescence of luminol-potassium hexacyanoferrate. In this system, luminol was added into running buffer solution and introduced at the head of separation capillary, and potassium hexacyanoferrate was introduced at the end of the capillary. A high potential buffer reservoir was constructed from a running buffer cell and an electrode buffer one, which were jointed with a frit, in order to avoid luminol electrolysis in high potential reservoir and the excursion of chemiluminescence baseline. A low potential flow reservoir was used to prevent electrode buffer solution from the contamination of chemiluminescence waste. Therefore, the proposed capillary electrophoresis-chemiluminescence system can avoid the electrolysis of chemiluminescence reagent, retain the stability of chemiluminescence baseline and prolong the working time of running and electrode buffer solutions. In addition, the matrix of cigarette sample solutions has also an inhibitory effect on the chemiluminescence intensity in the indirect detection, whereas the influence was not observed in the separation of standard solutions. After the correction of matrix inhibition and the calibration with standard addition method, chlorogenic acid and rutin were determined in four cigarette samples by the improved capillary electrophoresis-chemiluminescence system.  相似文献   

5.
This paper describes the determination of ciclopirox olamine in pharmaceutical formulations using capillary electrophoresis with capacitively coupled contactless conductivity detection. In an alkaline medium, ciclopirox olamine is converted into an anionic species and its detection is possible in capillary electrophoresis with capacitively coupled contactless conductivity detection without an electroosmotic flow modifier, because it is a low-mobility species. A linear working range from 2.64 to 264 μg/mL in sodium hydroxide electrolyte as well as low detection limit (0.39 μg/mL) and a good repeatability (RSD = 3.4% for 264 μg/mL ciclopirox solution (n = 10)) were achieved. It was also possible to determine olamine in its cationic form when acetic acid was used as the electrolyte solution. The results obtained include a linear range from 26.4 to 184.8 μg/mL and a detection limit of 2.6 μg/mL olamine. The proposed methods were applied to the analysis of commercial pharmaceutical products and the results were compared with the values indicated by the manufacturer as well as those obtained using a titrimetric method recommended by American Pharmacopoeia.  相似文献   

6.
A polymer microfluidic chip accomplishing automated sample flow and replacement without external controls and an application of the chip for bioanalytical reaction were described. All the fluidic operations in the chip were achieved by only natural capillary flow in a time-planned sequence. For the control of the capillary flow, the geometry of the channels and chambers in the chip was designed based on theoretical considerations and numerical simulations. The microfluidic chip was made by using polymer replication techniques, which were suitable for fast and cheap fabrication. The test for a biochemical analysis, employing an enzyme (HRP)-catalyzed precipitation reaction, exhibited a good performance using the developed chip. The presented microfluidic method would be applicable to biochemical lab-on-a-chips with integrated fluid replacement steps, such as affinity elution and solution exchange during biosensor signaling.  相似文献   

7.
This paper describes a microfabricated free-flow electrophoresis device with integrated ion permeable membranes. In order to obtain continuous lanes of separated components an electrical field is applied perpendicular to the sample flow direction. This sample stream is sandwiched between two sheath flow streams, by hydrodynamic focusing. The separation chamber has two open side beds with inserted electrodes to allow ventilation of gas generated during electrolysis. To hydrodynamically isolate the separation compartment from the side electrodes, a photo-polymerizable monomer solution is exposed to UV light through a slit mask for in situ membrane formation. These so-called salt-bridges resist the pressure driven fluid, but allow ion transport to enable electrical connection. In earlier devices the same was achieved by using open side channel arrays. However, only a small fraction of the applied voltage was effectively utilized across the separation chamber during free-flow electrophoresis and free-flow isoelectric focusing. Furthermore, the spreading of the carrier ampholytes into the side channels resulted in a very restricted pH gradient inside the separation chamber. The chip presented here allows at least 10 times more efficient use of the applied potential and a nearly linear pH gradient from pH 3 to 10 during free-flow isoelectric focusing could be established. Furthermore, the application of hydrodynamic focusing in combination with free-flow electrophoresis can be used for guiding the separated components to specific chip outlets. As a demonstration, several standard fluorescent markers were separated and focused by free-flow zone electrophoresis and by free-flow isoelectric focusing employing a transversal voltage of up to 150 V across the separation chamber.  相似文献   

8.
Two carrier-free electrophoretic separation methods, capillary zone electrophoresis (CZE) and continuous free-flow zone electrophoresis (FFZE), have been applied to both microanalysis at the nanogram level and preparative fractionation, with a throughput of 30 mg/h, of synthetic growth hormone releasing peptide (GHRP). A crude product of GHRP, a hexapeptide with the sequence His-D-Trp-Ala-Trp-D-Phe-Lys-NH2, synthesized by the solid phase methodology, was desalted and analyzed by CZE. Based on the results of analytical CZE the separation was converted into a preparative purification procedure by continuous FFZE, employing the same separation medium (0.5 mol/L acetic acid, pH 2.6). The purifity of peptide fractions obtained by FFZE was reevaluated by CZE. The combination of these two techniques proved to be a valuable tool for both peptide analysis and peptide purification. A close correlation of CZE and FFZE, resulting from the fact that both methods are based on the same separation principle (zone electrophoresis) and that both are performed in a free solution of the same composition, was confirmed. However, when transforming data from CZE to FFZE, the different electroosmotic flow, temperature and electric field intensity in the capillary and in the flow-through cell, respectively, have to be taken into account and corresponding corrections have to be made.  相似文献   

9.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

10.
An in‐house flow‐injection capillary electrophoresis with capacitively coupled contactless conductivity detection method was developed for the direct measurement of colistin in pharmaceutical samples. The flow injection and capillary electrophoresis systems are connected by an acrylic interface. Capillary electrophoresis separation is achieved within 2 min using a background electrolyte solution of 5 mM 2‐morpholinoethanesulfonic acid and 5 mM histidine (pH 6). The flow‐injection section allows for convenient filling of the capillary and sample introduction without the use of a pressure/vacuum manifold. Capacitively coupled contactless conductivity detection is employed since colistin has no chromophore but is cationic at pH 6. Calibration curve is linear from 20 to 150 mg/L, with a correlation coefficient (r2) of 0.997. The limit of quantitation is 20 mg/L. The developed method provides precision, simplicity, and short analysis time.  相似文献   

11.
靳艳  林炳承  冯应升 《分析化学》2001,29(5):502-506
葡萄糖作为羟丙基甲基纤维素(Hydroxpropylmethyl cellulose,HPMC)筛分体系的添加剂,可以改善该体系在低浓度时分离脱氧核糖核酸(DNA)的能力。研究了硼酸浓度和pH值对葡萄糖-羟丙基甲基纤维素体系分离性能的影响;并将葡萄糖与其它添加剂如甘油、甘露醇对分离的影响作了比较,葡萄糖特有的环状结构使得其对羟丙基甲基纤维素体系分离能力的提高更为显著。  相似文献   

12.
首次建立了测定一氯乙酸和乙酸的电离常数的高效毛细管区带电泳新方法.该方法利用中性标记物和电流突跃两种方法来标记电渗流,通过测定乙酸和一氯乙酸在一定pH的缓冲溶液中的电泳淌度,结合数据回归分析拟合,求得乙酸和一氯乙酸的电离常数;所得数据和文献报道值较为接近.总体而言,毛细管区带电泳法可简单、快速、可靠地用于测定待测化合物的电离常数.  相似文献   

13.
Two methods for monosaccharide analysis by capillary electrophoresis (CE) using counterelectroosmotic and coelectroosmotic modes with indirect laser-induced fluorescence detection were optimised and compared. A mixture of seven glycosaminoglycan-derived hexoses was separated in alkaline fluorescein-based electrolytes and detected in both counterelectroosmotic and coelectroosmotic conditions. The fluorescein concentration and pH of the background electrolyte, and the influence of the reversal of electroosmotic flow by addition of hexadimethrine bromide on the separation were studied. Coelectroosmotic CE conditions provided better resolution and limits of detection. A 10(-6) M fluorescein solution at pH 12.25 containing 0.0005% (w/v) hexadimethrine bromide was used as background electrolyte. Quality parameters such as run-to-run, day-to-day precision and limits of detection were calculated, and better figures of merit were obtained for the coelectrooosmotic conditions than for the counterelectroosmotic mode. The coelectroosmotic method was applied to the quantitation of the hexosamine contents in glycosaminoglycans after acid hydrolysis. The method proved to be suitable for the determination of dermatan sulfate in heparin down to 2% (w/w).  相似文献   

14.
Inorganic anions are almost always determined by capillary electrophoresis (CE) at an alkaline pH, so the analytes will be fully ionized. However, a long-chain quaternary ammonium salt usually must be added as a flow modifier to the carrier electrolyte to reverse the direction of the electroosmotic flow. By working at a sufficiently acidic pH, the electroosmotic flow in fused-silica capillaries is virtually eliminated, and anions can be separated simply by differences in their electrophoretic mobilities. Excellent separations were obtained for AuCl4 and the chloro complexes of platinum group elements in HCl solution at pH 2.0 to 2.4. No additional buffer or flow modifier was needed. This CE technique is an excellent way to follow slow hydrolytic reactions in which one or more of the chloride ligands is replaced by water. Sharp peaks and good separations were also obtained for MnO4, VO3, chromate, molybdate, ferrocyanide, ferricyanide and stable complex ions such as chromium oxalate (CrO33−).  相似文献   

15.
A rapid and simple method is presented for the determination of folic acid (FA) by capillary electrophoresis (CE) with chemiluminescence (CL) detection. This method was based on enhance effect of FA on the CL reaction between luminol and BrO(-) in alkaline aqueous solution. Optimal separation and determination was obtained with an electrophoretic buffer of 35 mM sodium borate (pH 9.4) containing 0.8 mM luminol, and an oxidizer solution of 1.6 mM NaBrO in 100 mM NaCO(3) buffer solution (pH 12.0). Under the optimal conditions, the determination of FA was achieved in less than 20 min, and the detection limit was 2.0 x 10(-8) M (S/N=3). The relative standard deviations (RSDs) on peak area and migration time were in the 1.5 and 1.1%, respectively. The present CE-CL method was applied to the determination of FA in commercial pharmaceutical tablets, apple juices and human urine.  相似文献   

16.
张强 《色谱》2001,19(3):217-218
 采用十六烷基三甲基溴化铵 (CTAB)为电渗流改性剂 ,考察了邻羟基苯甲酸、间羟基苯甲酸和对羟基苯甲酸在高效毛细管区带电泳模式下的分离行为 ,研究了缓冲液的pH和添加剂甲醇的用量对这 3种同分异构体的分离、峰形和出峰顺序的影响 ,并据此优化了这 3种异构体的分离条件。  相似文献   

17.
Indirect UV detection of carbohydrates in capillary zone electrophoresis   总被引:1,自引:0,他引:1  
Summary A new system for the rapid and sensitive analysis of underivatized carbohydrates has been established using capillary zone electrophoresis with indirect UV detection. At an applied potential of 28 kV, sugars and sugar acids could be separated by the combined effects of electroendosmosis and electrophoresis within 20 minutes in a fused silica capillary of 50 m internal diameter and an effective length of 100 cm using 6mM sorbic acid, pH 12.1, as both carrier electrolytie and chromophore. The alkaline pH ensured ionization of the sugars and, hence, their detection by means of charge displacement. Furthermore, the chosen concentration of sorbic acid allowed the smallest fractional change in the background signal to be measured. While the electrophoretic mobilities of the sugars were found to increase within a pH range of 11.9 to 12.3, those of the sugar acids were not affected. Due to the increasing competition of hydroxide ions in the displacement of the chromophore with rising pH, a significant loss of sensitivity is observed at pH values higher than 12.1 and this pH was found to provide sufficient resolution, optimum sensitivity, and a acceptably short analysis time. Under these conditions, a lower detection limit of 2 pmol was obtained for glucose.  相似文献   

18.
The present study relates to a new capillary electrophoresis method for the determination of N-methylpyrrolidine, an impurity considered to be toxic and also potential degradation impurity in cefepime hydrochloride drug substance. The newly developed capillary electrophoresis method for determining the content of N-methylpyrrolidine in cefepime for injection has been validated as per International Conference on Harmonization (ICH) guidelines to prove the selectivity, sensitivity, suitability, robustness, and ruggedness of the method. This simple, efficient, and rapid methodology may be used by pharmaceutical industry for routine analysis as well as during stability studies. The newly developed capillary electrophoresis method to determine the content of N-methylpyrrolidine in cefepime for injection requires 10 min for data acquisition, and uses an indirect UV photometry method to detect the analyte signal at 240 nm against the reference signal at 210 nm. The electrophoretic system is optimized to get stable base line, higher signal to noise ratio and peaks with narrow peak width. The method employs bare fused silica capillary with extended light path, effective length of capillary is 56 cm and inner diameter of capillary is 50 μm, 5 mmole of imidazole buffer adjusted to pH 5.1 with 3 molar acetic acid solution is used as background electrolyte. The sample is introduced in hydrodynamic mode employing pressure of 50 mbar for 5 s, and the desired separation is achieved with constant applied voltage of 25 kV at ambient temperature (~25°C).  相似文献   

19.
毛细管电泳法进行化妆品中砷的形态分析   总被引:5,自引:0,他引:5  
侯晋  周钰明 《化学分析计量》2004,13(6):48-49,55
从样品前处理、毛细管电泳修饰、进样方式、分离模式和检测条件等方面对毛细管电泳法研究化妆品中砷的形态进行讨论。在不同pH值的缓冲溶液中,用毛细管电泳法进行化妆品中砷的形态分析,测定波长为197nm。采用磷酸盐缓冲溶液,化妆品中As(Ⅲ)、二甲基胂(DMA)、对氨苯基胂酸(ANA)、一甲基胂(MMA)和As(V)等5种形态的砷可通过毛细管电泳法得到有效分离。  相似文献   

20.
This paper describes the analysis of recombinant human deoxyribonuclease (rhDNAse), an acidic and complex phosphoglycoprotein, by capillary zone electrophoresis (CZE). Separation performance was found to be dramatically improved by the addition of calcium ions to the CZE running buffer, due to the influence of calcium binding on the charge and the electrophoretic behavior of rhDNAse. The pH dependent calcium binding effects on the electrophoretic separation were demonstrated at both acidic and basic pH, resulting in a two-dimensional (pH 4.8 and 8.0) calcium aided analysis that achieved multipeak resolution of the complex, glycosylation based, charge microheterogeneity of rhDNAse. Two-dimensional investigation of neuraminidase- and alkaline phosphatase-digested protein further demonstrated that the acidic pH resolved acidic charge heterogeneity and that the basic pH discriminated neutral heterogeneity. This work demonstrates the resolving power of CZE for the analysis of a complex microheterogeneous glycoprotein, and emphasizes the importance of employing multiple separation conditions in accordance with known structural characteristics of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号