首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The Weissler reaction in which iodide is oxidised to a tri-iodide complex (I(3)(-)) has been widely used for measurement of the intensity of ultrasonic and hydrodynamic cavitation. It was used in this work to compare ultrasonic cavitation at 24kHz with hydrodynamic cavitation using two different devices, one a venturi and the other a sudden expansion, operated up to 8.7bar. Hydrodynamic cavitation had a maximum efficiency of about 5x10(-11) moles of I(3)(-) per joule of energy compared with the maximum of almost 8x10(-11)molJ(-1) for ultrasonic cavitation. Hydrodynamic cavitation was found to be most effective at 10 degrees C compared with 20 degrees C and 30 degrees C and at higher upstream pressures. However, it was found that in hydrodynamic conditions, even without cavitation, I(3)(-) was consumed at a rapid rate leading to an equilibrium concentration. It was concluded that the Weissler reaction was not a good model reaction for the assessment of the effectiveness of hydrodynamic cavitation.  相似文献   

2.
In order to propose standard methods for the local measurement of the effects of power ultrasound inside a reactor, we compare three methods: a chemical dosimeter (Weissler reaction), a thermal sensor (embedded thermocouple) and an electrochemical probe (developed in our laboratory). The same emission device, i.e. the resonant tube (Sonitube-Sodeva), was used for all these methods. Similar trends were observed using various measurements: ultrasound effects vary significantly along the tube axis (due to standing waves in the resonant tubular emitter), but only slightly from the tube axis to the wall. More reliable and reproducible results were obtained with the thermal and electrochemical probes than with the chemical dosimeter.  相似文献   

3.
In the first part of the work, it was observed, by a relative method, that the Weissler reaction and the Br2-catalysed isomerisation of maleic acid into fumaric acid are faster at 20 kHz than at 1.7 MHz. The difference between the relative reaction rates can be considered as small when the two order magnitude difference between the two frequencies is taking into account. In the second part of the work, the frequency effect associated to an isotope effect was studied. The Weissler reaction was performed in H2O and D2O at 20 kHz and 1.7 MHz. The isotope effect is not the same at the two frequencies.  相似文献   

4.
D. Skauen 《Ultrasonics》1976,14(4):173-176
High power ultrasonic equipment is now commonplace in biological, chemical and pharmaceutical laboratories. These devices are being used for a variety of purposes including emulsification, dispersion, extraction and cell disruption. The average researcher has little basis for comparing the relative energy output of various ultrasonic probes at different power settings and he has neither the interest nor the time to determine their relative heat production.This research was designed to prepare a series of relative power indices and temperature profiles for several ultrasonic cell disruptors. Even though there are variations among equipment bearing the same model number it was considered worthwhile to make available relative cavitational and temperature data.  相似文献   

5.
This paper presents the novel use of a sonochemical reaction product as a sensing material in self-powered ultrasonic reactor devices for determination of ultrasound parameters. A piezoelectric nanogenerator was fabricated via sonochemical synthesis of SbSeI nanowires compressed into a bulk sample. The prepared device was used to develop two fast and simple evaluation methods for acoustic power in liquid. A calibration procedure was carried out for both methods using a VCX-750 ultrasonic processor. The ultrasound acoustic power was varied within a 150 W to 750 W range and the corresponding nanogenerator electrical responses were measured. The voltage signals of the first method fit the best with theoretical dependence. The second technique was based on the application of the Fast Fourier Transform (FFT) to the measured electric output. The results of these two approaches were convergent. Acoustic power values of 255(8) W and 222(7) W were determined for the Sonic-6 reactor using theoretical dependence fitting to experimental data and FFT analysis, respectively. Developed sensing technology possesses great potential for sonochemistry applications.  相似文献   

6.
Sonochemical degradation for toxic halogenated organic compounds.   总被引:5,自引:0,他引:5  
This paper describes the degradation of p-chlorophenol using three different ultrasonic devices. The dissipated power in the reaction matrix was measured based on calorimetric method. The study showed that hydrogen peroxide can improve the sonochemical reaction and gases dissolved in reaction matrix can affect the process to a small extent. The reaction mechanism and kinetics of degradation were also investigated.  相似文献   

7.
The erratic behaviour of cavitational activity exhibited in a sonochemical reactor pose a serious problem in the efficient design and scale-up; thus it becomes important to identify the active and passive zones existing in the reactor so as to enable proper placement of the reaction mixtures for achieving maximum benefits. In the present work mapping of ultrasonic horn has been carried with the help of local pressure measurement using a hydrophone and estimation of amount of liberated iodine using the Weissler reaction and a quantitative relationship has been established. The measured local pressure pulses have been used in the theoretical simulations of the bubble dynamics equations to check the type of cavitation taking place locally and also estimate the possible collapse pressure pulse in terms of maximum bubble size reached during the cavitation phenomena. Relationship has been also established between the observed iodine liberation rates and the maximum bubble size reached. The engineers can easily use these unique relationships in efficient design, as the direct quantification of the secondary effect is possible.  相似文献   

8.
Phase transfer catalysis is used widely in the synthesis of various organic chemicals in both liquid-liquid and solid-liquid systems. The C-alkylation of benzyl cyanide by 2-bromopropane in the presence of sodium hydroxide was investigated. The reaction rate of the phase transfer reaction can be increased by ultrasound, but frequency and power of ultrasound and the geometry of the ultrasonic field inside the reactor influence the reaction strongly. The results demonstrate clearly, that to achieve a high efficiency of ultrasonic systems in chemical processes the ultrasonic parameters and geometry of the sonotrode had to be adopted.  相似文献   

9.
胡松青  李琳  陈玲 《应用声学》2005,24(5):323-328
采用不同电功率的超声波处理了聚乙二醇(PEG6000)溶液。凝胶渗透色谱(GPC)分析超声处理后的PEG溶液发现,当超声电功率超过250W时,PEG分子量随超声波作用强度的增大而减少,随超声波作用时间的延长而增大;在电功率超过250W超声波作用下,傅立叶红外光谱(FT-IR)分析表明,组成PEG的单体没有明显改变,但是,羟基含量分析表明,PEG固体样品中的羟基含量有所减少。结合实验结果,根据高分子化学、有机化学和超声化学中相关理论对PEG超声化学反应机理进行了探讨,认为:当超声波作用于PEG溶液时,同时存在有PEG的缩水聚合反应和自由基降解反应,当频率为20-25kHz、电功率为250-600W的超声作用于PEG6000溶液时,缩水聚合反应占主导地位。  相似文献   

10.
The present study deals with the size reduction based on the recrystallization (antisolvent approach using water) of 3,3′-Diamino Diphenyl Sulfone (DADPS) using different types of cavitational reactors as an alternative to the conventional process of mechanical size reduction, which is an energy intensive approach. Ultrasound was applied for fixed time specific to the reactors namely ultrasonic probes at different power dissipation levels and also ultrasonic bath. A High Speed Homogenizer was also used at varying speeds of rotation to establishing the efficacy for size reduction. The processed sample was analysed for particle size and morphology using particle size analyser and optical microscopy respectively. The final yield of recrystallization was also determined. The power density in W/L and power intensity in W/m2 calculated for each equipment has been used to establish efficacy for size reduction since all devices had dissimilar configurations. Based on the studies of varying power intensity of the different US equipment, it was established that larger the power intensity and power density, smaller was the resultant final particle size after treatment for same time. Among the various ultrasonic devices used, Sonics VCX750 probe yielded the best size reduction of 85.47% when operated at 40% amplitude for 60 min for a volume of 200 ml. A High Speed Homogenizer used at 7000 rpm gave 92.35% of size reduction in 15 min operation and also demonstrated the best energy efficiency. The work has elucidated the comparison of different cavitational devices for size reduction for the first time and presented the best reactors and conditions for the desired size reduction.  相似文献   

11.
In the present study, heavy oil viscosity reduction in Daqing oil field was investigated by using an ultrasonic static mixer. The influence of the ultrasonic power on the viscosity reduction rate was investigated and the optimal technological conditions were determined for the ultrasonic treatment. The mechanism for ultrasonic viscosity reduction was analyzed. The flow characteristics of heavy oil in the mixer under the effect of cavitation were investigated using numerical modeling, and energy consumptions were calculated during the ultrasonic treatment and vis-breaking processes. The experimental results indicated that the ultrasonic power made the largest impact on the viscosity reduction rate, followed by the reaction time and temperature. The highest viscosity reduction rate was 57.34%. Vacuole was migrated from the axis to the wall along the fluid, accelerating the two-phase transmission and enhancing the radial flow of the fluid, which significantly improved the ultrasonic viscosity reduction. Compared to the vis-breaking process, the energy consumption of ultrasonic treatment process was 43.03% lower when dealing with the same quality heavy oil. The optimal process conditions were found to be as follows: ultrasonic power of 1.8 kW, reaction time of 45 min and reaction temperature of 360 °C. The dissociation of the molecules of heavy oil after ultrasonication has been checked. After being kept at room temperature 12 days, some light components were produced by the cavitation cracking, so the viscosity of the residual oil could not return to that of the original residual oil, which meant that the “cage effect” was not reformed.  相似文献   

12.
以油溶性过氧化羟基异丙苯(CHP)为氧化剂,Al2O3为催化剂,引入超声作用,以正辛烷为模拟油品对油中二苯并噻吩的氧化进行了研究。考察了反应温度、反应时间、催化剂用量、氧硫比、超声功率对二苯并噻吩(DBT)降解率的影响并进行了正交实验,结果表明,各因素影响程度大小依次为:反应温度>催化剂用量>超声功率>反应时间>氧硫比,在反应温度为70℃,反应时间为45 min,氧硫比为5:1,催化剂用量为0.3 g,超声功率为60 W的最佳氧化条件下,DBT的降解率达到了88.0%。  相似文献   

13.
In the specific applications of surface cleaning and electrochemistry which consist of processes implanting surface irradiation by ultrasound, design of large-scale devices requires us to understand acoustic field distribution together with its quantification. This observation allows systematic measurement of ultrasonic stirring throughout electrochemical determination of “equivalent” flow velocity versus various operating parameters (powers, electrode-horn distances, reactor geometry, frequencies, etc.). A numerical model was proposed to fit our curves and to identify some parameters by taking into account the characteristics of the ultrasonic wave (absorption coefficient, rate of cavitation bubbles and acoustic power). Nevertheless, the flicked behavior of the ultrasonic processes in the vicinity of the electrode as well as bubble presence which induce non-linearities in wave propagation lead us to propose a new approach based on parameter identification by methods currently used in chemical engineering. These parameters were related to physical criteria, and the global model was evaluated throughout analysis of its sensibility criteria.  相似文献   

14.
王地  关怀  高楠  于萍  邹海艳 《应用声学》2009,28(2):125-128
目的:比较两种超声发生器对化学反应的促进作用。方法:首先用碘释放测量法进行实验,分别用气哨式流体动力式超声发生器和槽式超声清洗仪处理碘化钾溶液,采用分光光度法测定碘化钾溶液的吸光度。随后分别用流体动力式超声与槽式超声提取黄芩,采用高效液相色谱法测定黄芩苷含量。结果:经流体动力式超声发生器和槽式超声清洗仪处理的碘化钾溶液的吸光度分别为0.990和0.498。以水为溶剂用流体动力式超声提取黄芩,黄芩苷含量显著高于槽式超声。结论:流体动力式发生器(每升能耗0.0156kwh)的空化效应高于槽式超声清洗仪(每升能耗0.0148kwh)。  相似文献   

15.
Comparative studies of lipase-catalyzed hydrolysis of soy oil in solvent-free system were carried out in shaking bath and in ultrasonic bath. A suitable ultrasonic power of 1.64 W cm(-2) was determined to guarantee satisfactory hydrolysis extent and lipase activity. The influence of temperature, pH, enzyme concentration and water/oil ratio was investigated subsequently. Compared with that in shaking bath, optimum temperature and inactivation temperature of lipase in ultrasonic bath were about 5-10 degrees C higher, while pH effect in ultrasonic bath was similar; ultrasound also led to a smooth increase of reaction rate at relatively higher enzyme loading and less use of water to saturate hydrolysis substrate. In optimum conditions, the overall hydrolysis reaction rate in the ultrasonic bath process was above 2-fold than that in the shaking bath process.  相似文献   

16.
Ultrasonic processing has attracted increasing attention by people because ultrasonic technology may represent a flexible ‘green’ alternative for energy efficient processes. The major challenges for the power ultrasound application in real situations are the design and development of specific power ultrasonic systems for large-scale operations. Thus, new families of power ultrasonic transducers have been developed in recent years to meet actual needs, and this contributes to the implementation of power ultrasound of application in many fields such as chemical industry, food industry and manufacturing. This paper presents the current state of ultrasonic transducers of magnetostrictiv type and piezoelectric type as well as applications of power ultrasound in various industrial fields including chemical reactions, drying/dehydration, welding, extraction, heat transfer enhancement, de-ice, enhanced oil recovery, droplet atomization, cleaning and fine particle removal. The review paper helps to understand the current development of power ultrasonic technology and its applications in various situations, and induce extended applications of power ultrasound to more and more fields.  相似文献   

17.
Burning of coal accounts for an enormous proportion of the current energy supply, especially in developing countries. Burning of coal produces large amounts of coal fly ash, which causes serious environmental problems unless it is managed properly. Using chemical analysis, we found that coal fly ash could be a promising source of Si, Al, Ca and some rare earth elements, especially with the assistance of some measures such as ultrasound. In this study, we extracted silicon from coal fly ash using an alkaline dissolution strategy and investigated the effects of temperature and ultrasonic power on the efficiency of silicon extraction. During a 70 min reaction, the efficiency of silicon extraction increased markedly, from 9.41% to 34.96%, as the reaction temperature increased from 70 °C to 110 °C. With ultrasound assistance, ultrasonic waves enhanced the extraction of silicon at both 80 °C and 110 °C at 720 W ultrasound, increasing the efficiency of silicon extraction from 6.01% to 15.36% and from 34.96% to 54.42%, respectively. However, at 900 W ultrasonic power, extraction was slightly inhibited at both temperatures, causing a little decrease in efficiency.  相似文献   

18.
Thermo-responsive polymer nanocomposite based on poly (styrene-co-N-isopropylacrylamide) hybrid tungsten dioxide (WO2@PS-co-PNIPAM) was synthesized by a facile ultrasonic irradiation (Frequency; 20 kHz, power; 180 W, calorimetrically determined power; 5.73 W in the bath, and Type; probe) method in the presence of water as inisolv. The as-synthesized WO2@PS-co-PNIPAM modified glassy carbon electrode (WO2@PS-co-PNIPAM/GCE) was acting as a reversibly switched detection for the electrooxidation of metoprolol (MTP), with the thermal stimuli response of the PNIPAM. In below lower critical solution temperature (LCST), the PS-co-PNIPAM expanded to embed the electroactive sites of WO2, and the MTP could not proceed via the polymer to attain electronic transfer, indicating the “off” state. Rather, in above LCST, the PS-co-PNIPAM shrank to reveal electroactive sites and expand cyclic voltammetric background peak currents, the MTP was capable to undergo electro-oxidation reaction usually and produce the response current, indicating “on” state. Additionally, the proposed sensor had excellent sensitivity (2.21 µA µM−1 cm−2), wide dynamic range (0.05–306 µM), and a low limit of detection of 0.03 µM for MTP. Intriguingly, the fabricated sensor demonstrates the good selectivity towards the detection of MTP among the possible interfering compounds. Eventually, the WO2@PS-co-PNIPAM/GCE has been utilized in the analysis of MTP in human blood serum samples.  相似文献   

19.
Ultrasound is used as degradation of hazardous organic compounds. In this study, indirect ultrasonic irradiation method was applied to the degradation process of phenol, the model hazardous organic compound, and the effects of irradiation distance on radical generation and ultrasonic power were investigated. The chemical effect estimated by KI oxidation dosimetry and ultrasonic power measured by calorimetry fluctuated for the irradiation distance, and there was a relationship between the period of the fluctuation of ultrasonic effect and the wavelength of ultrasound. The degradation of phenol was considered to progress in the zero-order kinetics, before the decomposition conversion was less than 25%. Therefore, the simple kinetic model on degradation of phenol was proposed, and there was a linear relation in the degradation rate constant of phenol and the ultrasonic power inside the reactor. In addition, the kinetic model proposed in this study was applied to the former study. There was a linear relation in the degradation rate constant of phenol and ultrasonic energy in the range of frequency of 20-30 kHz in spite of the difference of equipment and sample volume. On the other hand, the degradation rate constant in the range of frequency of 200-800 kHz was much larger than that of 20-30 kHz in the same ultrasonic energy, and this behaviour was agreed with the former investigation about the dependence of ultrasonic frequency on chemical effect.  相似文献   

20.
An investigation to determine the ability of ultrasonic radiation to chemically alter polycyclic aromatic hydrocarbons (PAHs) in aqueous solution has been conducted. The data indicate that chemical alteration of PAHs can be induced under intense ultrasonic treatment. The extent and outcome of reaction is a function of irridation time and aqueous solution parameters. Reaction products were analysed by gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). Reaction products from ultrasonic treatment of aqueous solutions of biphenyl include ortho, meta, and para-1,1 biphenols. The principal product from ultrasonic treatment of aqueous phenanthrene solutions appears to be a phenanthrene-diol. The number and composition of reaction products for both PAHs tested suggest that a free radical mechanism is likely during aqueous high intensity ultrasonic treatment. The use of ultrasound to treat PAH contaminated aqueous solutions in tandem with other methodologies appears promising. However, the toxicity of reaction products produced by treatment remains to be determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号