首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas entrainment by a liquid film falling around a stationary Taylor bubble in a 0.1 m diameter vertical tube is studied experimentally with the purpose of validating a model formulated in an earlier phase of our research. According to this model for a fixed liquid velocity the gas entrainment should be proportional to the waviness of the film (its intermittency) and the wave height and inversely proportional to the film thickness. For Taylor bubble lengths ranging from 1D to 15D these film parameters have been measured with a Laser Induced Fluorescence technique. The gas entrainment has been determined from the net gas flux into the liquid column underneath the Taylor bubble by using data on gas re-coalescence into the rear of the Taylor bubble. These data are available for lengths ranging from 4.5D to 9D. The model results with the measured film characteristics compare well with the observed gas entrainment. The fact that the net gas flux becomes constant for long Taylor bubbles, whereas the wave height still increases, warrants further study.  相似文献   

2.
In this article, the flow instabilities during the rise of a single bubble in a narrow vertical tube are studied using a transient two-dimensional/axisymmetric model. To predict the shape of the bubble deformation, the Navier-Stokes equations in addition to an advection equation for liquid volume fraction are solved. A modified volume-of-fluid technique based on Youngs' algorithm is used to track the bubble deformation. To validate the model, the results of simulations for terminal rise velocity and bubble shape are compared with those of the experiments. The effect of different parameters such as initial bubble radius, channel height, liquid viscosity and surface tension on the shape and rise velocity of the bubble is investigated.  相似文献   

3.
4.
This paper discusses the role of the gas injection pattern on the large scale structures in a homogeneous pseudo-2D bubble column operated at relatively high gas hold-ups up to 8%. Seven cases with different inlet configuration have been studied experimentally by Harteveld et al. Each of these cases has been simulated using a (parallel) Euler–Lagrange model developed by Darmana et al. The presence of coherent structures for both uniform and non-uniform gas injection is studied. Furthermore, the influence of the gas injection pattern on the dynamics is investigated, while the statistical (average and fluctuating) quantities are compared with the PIV/PTV and LDA measurement data of Harteveld et al. The results show that the model resembles the observed experimental flow structures to a large extent.  相似文献   

5.
A numerical model is described for the prediction of turbulent continuum equations for two-phase gas–liquid flows in bubble columns. The mathematical formulation is based on the solution of each phase. The two-phase model incorporates interfacial models of momentum transfer to account for the effects of virtual mass, lift, drag and pressure discontinuities at the gas–liquid interface. Turbulence is represented by means of a two-equation k–ϵ model modified to account for bubble-induced turbulence production. The numerical discretization is based on a staggered finite-volume approach, and the coupled equations are solved in a segregated manner using the IPSA method. The model is implemented generally in the multipurpose PHOENICS computer code, although the present appllications are restricted to two-dimensional flows. The model is applied to simulate two bubble column geometries and the predictions are compared with the measured circulation patterns and void fraction distributions.  相似文献   

6.
环形喷管喷口气泡演化的实验研究   总被引:2,自引:0,他引:2  
水下气泡的发展演化及气泡动力学行为是气液两相动力学的基础理论与水下射流应用的重要基础. 环形喷管/喷口形成的气泡及气体射流具有其不同于圆孔实心射流的特殊表现与规律机制,随着同心筒破水发射等特殊应用的出现,环形喷口气体射流/泡流的基础现象观测和机制分析成为迫切的需求. 基于环形喷管的设计和水下射流条件的分析,设计建立了一套环形喷管水箱实验系统,对水下环形喷管喷口气泡发展演化过程进行了初步的实验研究. 为观测研究气体通过环形喷管气泡生长发展过程,在较低压力、较低流速下,采用高速摄影仪记录气泡生长及发展演化过程. 结合对气泡发展演化过程的图像处理与分析,研究分析了环形喷口气泡形成区制、气泡生长过程形态发展特点、以及气泡形成时间及气泡体积变化特点. 研究表明:在本实验气体流量范围内(50.8~237.3 dm3/min),环形喷口气泡发展演化过程呈现较为明显的三周期区制,前泡尾流影响是环形气泡呈三周期区制的主要原因;不同周期内的气泡形成时间具有较稳定规律,并受到流量影响;气泡生长过程中有较为明显的下沉、回升特征;气泡表面张力、液体惯性与流动的共同作用,造成了典型的气泡顶部坍塌现象.   相似文献   

7.
It is generally admitted that the gas holdup is independent of the column dimensions and gas sparger design if three criteria are satisfied: the diameter of the bubble column is larger than 0.15 m, gas sparger openings are larger than 1–2 mm and the aspect ratio is larger than 5. This paper contributes to the existing discussion; in particular, the effect of the aspect ratio (within the range 1–15) in a counter-current gas-liquid bubble column has been experimentally studied and a new gas holdup correlation to estimate the influence of aspect ratio, operation mode and working fluid on the gas holdup has been proposed. The bubble column, equipped with a spider gas sparger, is 5.3 m in height, has an inner diameter of 0.24 m; gas superficial velocities in the range of 0.004–0.23 m/s have been considered, and, for the runs with water moving counter-currently to the gas phase, the liquid has been recirculated at a superficial velocity of −0.0846 m/s. Filtered air has been used as the gaseous phase in all the experiments, while the liquid phase has included tap water and different aqueous solutions of sodium chloride as electrolyte. Gas holdup measurements have been used to investigate the flow regime transitions and the global bubble column hydrodynamics. The counter-current mode has turned out to increase the gas holdup and destabilize the homogeneous flow regime; the presence of electrolytes has resulted in increasing the gas holdup and stabilizing the homogeneous flow regime; the aspect ratio, up to a critical value, has turned out to decrease the gas holdup and destabilize the homogeneous flow regime. The critical value of the aspect ratio ranged between 5 and 10, depending on the bubble column operation (i.e., batch or counter-current modes) and liquid phase properties. Since no correlation has been found in the literature that can correctly predict the gas holdup under the investigated conditions, a new scheme of gas holdup correlation has been proposed. Starting from considerations concerning the flow regime transition, corrective parameters are included in the gas holdup correlation to account for the effect of the changes introduced by the aspect ratio, operation mode and working fluid. The proposed correlation has been found to predict fairly well the present experimental data as well as previously published gas holdup data.  相似文献   

8.
Single cavitation bubbles exhibit severe modeling and simulation difficulties. This is due to the small scales of time and space as well as due to the involvement of different phenomena in the dynamics of the bubble. For example, the compressibility, phase transition, and the existence of a noncondensable gas inside the bubble have strong effects on the dynamics of the bubble. Moreover, the collapse of the bubble involves the occurrence of critical conditions for the pressure and temperature. This adds extra difficulties to the choice of equations of state. Even though several models and simulations have been used to study the dynamics of the cavitation bubbles, many details are still not clearly accounted for. Here, we present a numerical investigation for the collapse and rebound of a laser‐induced cavitation bubble in liquid water. The compressibility of the liquid and vapor are involved. In addition, great focus is devoted to study the effects of phase transition and the existence of a noncondensable gas on the dynamics of the collapsing bubble. If the bubble contains vapor only, we use the six‐equation model for two‐phase flows that was modified in our previous work [A. Zein, M. Hantke, and G. Warnecke, J. Comput. Phys., 229(8):2964‐2998, 2010]. This model is an extension to the six‐equation model with a single velocity of Kapila et al. (Phys. Fluid, 13:3002‐3024, 2001) taking into account the heat and mass transfer. To study the effect of a noncondensable gas inside the bubble, we add a third phase to the original model. In this case, the phase transition is considered only at interfaces that separate the liquid and its vapor. The stiffened gas equations of state are used as closure relations. We use our own method to determine the parameters to obtain reasonable equations of state for a wide range of temperatures and make them suitable for the phase transition effects. We compare our results with experimental ones. Also our results confirm some expected physical phenomena. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
三维气泡与自由表面相互作用的直接数值模拟   总被引:2,自引:0,他引:2  
采用VOF中的PLIC界面重构方法数值模拟了三维气泡在液流中上升并与自由表面相互作用的运动.分别考察了不同初始高度,有无来流及有无再生气泡对气泡上升高度、上升速度、压力及与自由表面相互作用等的影响.结果表明:气泡初始位置越低,顶端上升的高度越大,自由面隆起的范围更广.越靠近自由表面,底部射流横向发展越窄,而向上的压力梯度,气泡上升速度,底部射流上升高度越大,反之则反;但如果底部射流均在接近自由表面以前已横向发展充分,则差别不大.气泡外形、上升高度、破裂时间以及上升速度与来流无关.产生再生气泡后,原生气泡与再生气泡相吸,相互加速对方的上升;自由表面抬升的高度增幅较大,范围拓宽,上升速度也大大增加,且再生气泡越多,自由表面隆起的范围越大.  相似文献   

10.
 The dynamic gas disengagement profile was measured in a 0.14 m diameter and 3.66 m high plexiglas column by using an analog output gauge, which was connected to a data acquisition system. This analog output gauge is a high accuracy continuous measurement level gauge. It is made up of a wave guide, a float, a motion or stress sensing device and a probe housing. The fluid level at any gas velocity is obtained by using the data acquisition system. The dynamic gas disengagement profile produced one slope in the bubble flow and two slopes in the churn turbulent flow representing unimodal and bimodal distributions of bubbles. Received: 13 September 1995/Accepted: 26 July 1996  相似文献   

11.
水平刚性面下方水下爆炸气泡垂向运动的理论研究   总被引:5,自引:0,他引:5  
为了研究边界面对水下爆炸气泡脉动的影响,根据势流理论建立了水平刚性面下方在浮力作用下作垂向运动的水下爆炸气泡的理论模型,编制计算程序进行求解。对水下爆炸气泡脉动运动的特点、流场的速度和压力的分布、气泡引起的载荷形式进行了分析。结果表明此模型能够反映水下爆炸气泡和周围流体介质的运动规律,并能进行定量的计算。  相似文献   

12.
The present work deals with the numerical investigation of a collapsing bubble in a liquid–gas fluid, which is modeled as a single compressible medium. The medium is characterized by the stiffened gas law using different material parameters for the two phases. For the discretization of the stiffened gas model, the approach of Saurel and Abgrall is employed where the flow equations, here the Euler equations, for the conserved quantities are approximated by a finite volume scheme, and an upwind discretization is used for the non‐conservative transport equations of the pressure law coefficients. The original first‐order discretization is extended to higher order applying second‐order ENO reconstruction to the primitive variables. The derivation of the non‐conservative upwind discretization for the phase indicator, here the gas fraction, is presented for arbitrary unstructured grids. The efficiency of the numerical scheme is significantly improved by employing local grid adaptation. For this purpose, multiscale‐based grid adaptation is used in combination with a multilevel time stepping strategy to avoid small time steps for coarse cells. The resulting numerical scheme is then applied to the numerical investigation of the 2‐D axisymmetric collapse of a gas bubble in a free flow field and near to a rigid wall. The numerical investigation predicts physical features such as bubble collapse, bubble splitting and the formation of a liquid jet that can be observed in experiments with laser‐induced cavitation bubbles. Opposite to the experiments, the computations reveal insight to the state inside the bubble clearly indicating that these features are caused by the acceleration of the gas due to shock wave focusing and reflection as well as wave interaction processes. While incompressible models have been used to provide useful predictions on the change of the bubble shape of a collapsing bubble near a solid boundary, we wish to study the effects of shock wave emissions into the ambient liquid on the bubble collapse, a phenomenon that may not be captured using an incompressible fluid model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
刘春嵘  周显初 《力学学报》1999,31(2):129-136
研究球形小气泡在理想流体的波浪场中的气体扩散过程,把小雷诺数下均匀来流绕流球形气泡的气体交换结果与气泡运动方程耦合在一起进行求解.讨论了溶解于水中的气体浓度、波浪、气泡半径、气泡初始深度对单个气泡气体扩散量的影响.由于气泡云对气体的输运,溶解于水中的气体可出现过饱和状态.对10m/s风速下气泡云的气体输运量进行了计算,得到水中O2的过饱和度可达1.89%~392%,与实际观测值一致.  相似文献   

14.
This work discusses the development of a three-dimensional Eulerian–Lagrangian CFD model for a gas–liquid flow in a rectangular column. The model resolves the time-dependent, three-dimensional motion of small gas bubbles in a liquid to simulate the dynamic characteristics of the oscillating bubble plume. Our model incorporates drag, gravity, buoyancy, lift, pressure gradient and virtual mass forces acting on a bubble rising in a liquid, and accounts for two-way momentum coupling between the phases. We use MUSIG model that provides a framework in which the population balance method together with the break up and coalescence models can be incorporated into three-dimensional CFD calculations. We use turbulent flow to describe liquid flow field. The standard κ–ε of turbulence is selected for calculating the properties of turbulent flow. The effect of aspect ratio of the column on the flow pattern, liquid velocity and gas hold-up profiles is discussed.  相似文献   

15.
Recurrence quantification analysis (RQA) has emerged as a useful tool for detecting singularities in non-stationary time-series data. In this paper, we use RQA to analyze the velocity–time data acquired using laser doppler anemometry (LDA) signals in a bubble column reactor for Single point and Multipoint point spargers. The recurring dynamical states within the velocity–time-series occurring due to the bubble and the liquid passage at the point of measurement, are quantified by RQA features (namely % Recurrence, % Determinism, % Laminarity and Entropy), which in turn are regressed using support vector regression (SVR) to predict the point gas hold-up values. It has been shown that SVR-based model for the bubble column reactor can be potentially useful for online prediction and monitoring of the point gas hold-up for different sparging conditions.  相似文献   

16.
Measurements of gas holdups in bubble columns of 0.16, 0.30 and 0.33 m diameter were carried out. These columns were operated in co-current flow of gas and liquid phases and in semibatch mode. The column of 0.33 m diameter was operated at elevated pressures of up to 3.6 MPa. Nitrogen was employed as the gas phase and deionized water, aqueous solutions of ethanol and acetone and pure acetone and cumene as the liquid phase. The effects of differing liquid properties, gas density (due to elevated pressure), temperature, column diameter and superficial liquid velocity on gas holdup were studied. The gas holdup measurements were utilized by differential pressure measurements at different positions along the height of the bubble columns which allowed for the identification of axial gas holdup profiles. A decrease of gas holdup with increasing column diameter and an increase of gas holdup with increasing pressure was observed. The effect of a slightly decreasing gas holdup with increasing liquid velocity was found to exist at smaller column diameters. The use of organic solvents as the liquid phase resulted in a significant increase in gas holdup compared to deionized water. It is found that published gas holdup models are mostly unable to predict the results obtained in this study.  相似文献   

17.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一.然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究.本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究.在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状.模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证.通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响.计算结果表明,电场对气泡的动态特性有显著影响.非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态.此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡.垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.  相似文献   

18.
The axisymmetric vibrations of an ideal incompressible liquid column in a rigid circular cylindrical vessel with a spherical gas bubble pulsating near the position of dynamic equilibrium are considered. The boundary-value problem for the liquid velocity potential and the equations for the vibrations of the gas bubble are solved under the conditions on the free surface, sidewall, and the boundary of the gas body. For the case of small amplitudes, the resonance frequencies of the system are determined, and the pressure field in the liquid column is constructed. The results are compared with data known for the gas-accumulation model, data obtained without allowance for the boundedness of the liquid, and experimental data. National Technical University (KPI), Kiev, Ukraine. Translated from Prikladnaya Mekhanika, Vol. 36, No. 7, pp. 74–80, July, 2000.  相似文献   

19.
In the framework of the foam process modelling, this paper presents a numerical strategy for the direct 3D simulation of the expansion of gas bubbles into a molten polymer. This expansion is due to a gas overpressure. The polymer is assumed to be incompressible and to behave as a pseudo‐plastic fluid. Each bubble is governed by a simple ideal gas law. The velocity and the pressure fields, defined in the liquid by a Stokes system, are subsequently extended to each bubble in a way of not perturbing the interface velocity. Hence, a global velocity–pressure‐mixed system is solved over the whole computational domain, thanks to a discretization based on an unstructured first‐order finite element. Since dealing with an Eulerian approach, an interface capturing method is used to follow the bubble evolution. For each bubble, a pure advection equation is solved by using a space–time discontinuous‐Galerkin method, coupled with an r‐adaptation technique. Finally, the numerical strategy is achieved by considering a global mesh expansion motion, which conserves the amount of liquid into the computational domain during the expansion. The expansion of one bubble is firstly considered, and the simulations are compared with an analytical model. The formation of a cellular structure is then investigated by considering the expansion of 64 bubbles in 2D and the expansion of 400 bubbles in 3D. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
Measurements have been obtained, by laser-Doppler anemometry (LDA), of the axisymetric, recirculating liquid flow caused by a column of air bubbles (5–612mm dia.) rising through caster oil in a cylindrical enclosure (100 mm dia.). The liquid velocities correspond to creeping flow. Axial and radial liquid velocity profiles are reported at eight axial stations and, close to within the bubble column, as a function of time. The maximum liquid velocity found outside the bubble column is about 0.5 of that of the bubbles and a very rapid radical decay from this value is noted. The temporal variation of the velocity field, due to the passage of the air bubbles, is undetectable at radial locations greater than about 112 bubble radii from the centreline.The variation of bubble velocity with axial distance was aise measured by LDA for liquid height to enclosure diámeter ratios of 0.98 and 2.78. The maximum bubble velocities were about 0.1–0.2 higher than the Strokes law terminal velocity. The increase is due to the convection of the bubble column by the liquid flow. The maximum bubble velocity is established within approximately three bubble diameters of the air inlet.The motion of the liquid has been calculated by the numerical solution of the steady form of the equations of motion, with the inner boundary of the area of integration lying 1.3 bubble radii from the centerline. The boundary conditions at this surface are assumed to be steady and are taken from measurements of the time-averaged velocity components. The assumption of steady flow at this boundary is supported by experimental observation and results in calculations which are generally in close agreement with the measurements. Discrepancies are confined to the immediate vicinity of the bubble column near to the top and bottom of the enclosure. These are ascribed to a combination of small asymmetries in the experiment and inadequate numerical resolution in these regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号