首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quasi steady evaporation of a spherical drop with internal heat release is studied. Energy is transferred from the drop to the ambient vapor—gas medium by molecular heat conduction, convection, and radiation. The differences of the temperature and the concentration between the surface of the drop and the region far from it are assumed to be small. The Reynolds and Péclet numbers, determined, respectively, using the free stream velocity and the mass-average velocity of the vapor—gas medium on the surface of the drop, satisfy the conditions Re R, Pe P, R Re 1, P Pe 1, Re Pe 1. The aim of the paper is to investigate the influence of asymmetry of the heat flux on the drag of the evaporating drop and to establish the conditions of applicability of the model of spherically symmetric evaporation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 3–10, January–February, 1984.  相似文献   

2.
We carry out a stochastic-perturbation analysis of a one-dimensional convection–dispersion-reaction equation for reversible first-order reactions. The Damköhler number, Da, is distributed randomly from a distribution that has an exponentially decaying correlation function, controlled by a correlation length, . Zeroth- and first-order approximations of the dispersion coefficient, D are computed from moments of the residence-time distribution obtained by solving a one-dimensional network model, in which each unit of the network represents a Darcy-level transport unit, and the solution of the transfer function in zeroth- and first-order approximations of the transport equation. In the zeroth-order approximation, the dispersion coefficient is calculated using the convection–dispersion-reaction equation with constant parameters, that is, perturbation corrections to the local equation are ignored. This zeroth-order dispersion coefficient is a linear function of the variance of the Damköhler number, (Da)2. A similar result was reported in a two-dimensional network simulation. The zeroth-order approximation does not give accurate predictions of mixing or spreading of a plume when Damköhler numbers, Da 1 and its variance, (Da)2 > 0.25 Da2. On the other hand, the first-order theory leads to a dispersion coefficient that is independent of the reaction parameters and to equations that do accurately predict mixing and spreading for Damköhler numbers and variances in the range (Da)2/Da0.3  相似文献   

3.
An analysis is carried out to study the effects of localized heating (cooling), suction (injection), buoyancy forces and magnetic field for the mixed convection flow on a heated vertical plate. The localized heating or cooling introduces a finite discontinuity in the mathematical formulation of the problem and increases its complexity. In order to overcome this difficulty, a non-uniform distribution of wall temperature is taken at finite sections of the plate. The nonlinear coupled parabolic partial differential equations governing the flow have been solved by using an implicit finite-difference scheme. The effect of the localized heating or cooling is found to be very significant on the heat transfer, but its effect on the skin friction is comparatively small. The buoyancy, magnetic and suction parameters increase the skin friction and heat transfer. The positive buoyancy force (beyond a certain value) causes an overshoot in the velocity profiles.A mass transfer constant - B magnetic field - Cfx skin friction coefficient in the x-direction - Cp specific heat at constant pressure, kJ.kg–1.K - Cv specific heat at constant volume, kJ.kg–1.K–1 - E electric field - g acceleration due to gravity, 9.81 m.s–2 - Gr Grashof number - h heat transfer coefficient, W.m2.K–1 - Ha Hartmann number - k thermal conductivity, W.m–1.K - L characteristic length, m - M magnetic parameter - Nux local Nusselt number - p pressure, Pa, N.m–2 - Pr Prandtl number - q heat flux, W.m–2 - Re Reynolds number - Rem magnetic Reynolds number - T temperature, K - To constant plate temperature, K - u,v velocity components, m.s–1 - V characteristic velocity, m.s–1 - x,y Cartesian coordinates - thermal diffusivity, m2.s–1 - coefficient of thermal expansion, K–1 - , transformed similarity variables - dynamic viscosity, kg.m–1.s–1 - 0 magnetic permeability - kinematic viscosity, m2.s–1 - density, kg.m–3 - buoyancy parameter - electrical conductivity - stream function, m2.s–1 - dimensionless constant - dimensionless temperature, K - w, conditions at the wall and at infinity  相似文献   

4.
The equilibrium states of homogeneous turbulence simultaneously subjected to a mean velocity gradient and a rotation are examined by using asymptotic analysis. The present work is concerned with the asymptotic behavior of quantities such as the turbulent kinetic energy and its dissipation rate associated with the fixed point (/kS)=0, whereS is the shear rate. The classical form of the model transport equation for (Hanjalic and Launder, 1972) is used. The present analysis shows that, asymptotically, the turbulent kinetic energy (a) undergoes a power-law decay with time for (P/)<1, (b) is independent of time for (P/)=1, (c) undergoes a power-law growth with time for 1<(P/)<(C 2–1), and (d) is represented by an exponential law versus time for (P/)=(C 2–1)/(C 1–1) and (/kS)>0 whereP is the production rate. For the commonly used second-order models the equilibrium solutions forP/,II, andIII (whereII andIII are respectively the second and third invariants of the anisotropy tensor) depend on the rotation number when (P/kS)=(/kS)=0. The variation of (P/kS) andII versusR given by the second-order model of Yakhot and Orzag are compared with results of Rapid Distortion Theory corrected for decay (Townsend, 1970).  相似文献   

5.
The boundary-layer flow generated on an impermeable vertical surface in a saturated porous medium is considered in the case when wall heating at a rate proportional tox is switched on at timet=0, (x measures distance along the wall and is a constant). The similarity equations which hold in the limit of larget are discussed and are shown to have a solution only for >–1. The behaviour of the solution as –1 and as is obtained. Numerical solutions of the initial value problem are then obtained for a range of values of . A direct numerical integration is possible for 1, while an iterative procedure is required for <1, with the numerical scheme becoming unstable for =–0.5.
Grenzschichtströmung an einer plötzlich aufgeheizten vertikalen Fläche, in einem gesättigten porösen Medium
Zusammenfassung Es wird die an einer undurchlässigen, vertikalen Fläche hervorgerufene Grenzschichtströmung im Falle eines Einschalten der Heizung beit=0 betrachtet. Die Stärke der Wandheizung is proportional zux , wobeix die Koordinate längs der Wand ist und eine Konstante. Die Ähnlichkeitsgleichungen werden für den Bereich von großen Zeitent besprochen und es wird gezeigt, daß eine Lösung nur für >–1 vorliegt. Es wird das Verhalten der Lösungen für –1 und erhalten. Numerische Lösungen für die Anfangsbedingungen des Problems werden für eine Reihe von -Werten errechnet. Eine direkte numerische Integration ist für 1 möglich, während für <1 eine Iteration erforderlich ist, wobei das numerische Verhalten für =–0.5 instabil wird.
  相似文献   

6.
We study properties of the topological entropy of the map F: f , C(I), generated by a fixed continuous map f C(I) of an interval of the straight line. In particular, we show that the topological entropy h(F) > 0 if and only if h(f) > 0.Translated from Neliniini Kolyvannya, Vol. 7, No. 2, pp. 180–187, April–June, 2004.  相似文献   

7.
The elastoplastic strain of metals being formed when they melt under the effect of a point heat source with a pulse duration greater than 10–6 sec is considered in this paper. The time development of the plastic strain and pressure domains in the melt is investigated. It is shown that two plastic strain domains occur during the interaction under consideration: a relatively broad domain of mechanical influence and a narrow domain of thermal influence. The stress-strain distributions as well as the hydrostatic pressure in the fluid are determined by a quasistationary temperature distribution starting with times corresponding to half (of the quasistationary) the value of the melt radius X 0.5. It is shown that the dimensions of the weak and strong plastic strain domains formed by heat and acoustic waves grow continuously to the quasistationary values, while the hydrostatic pressure in the fluid reaches the maximum value for X 0.3...0.4. The ratio between the radii of the plastic strain zones and of the liquid bath for a quasistationary temperature distribution in the first domain lies within the range 10–50, and does not exceed 1.7 for Cu, Ni, and Fe in the second. The anomalous nature of the development of the strong plastic strain domain in Al, because of migration of the metal grain boundaries to result in collapse of the domain for the values X 0.5 accompanied by a jumplike diminution in the hydrostatic pressure in the fluid, is noted.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 129–140, May–June, 1976.  相似文献   

8.
A study is presented of the flow of stability of a Grad-model liquid layer [1, 2] flowing over an inclined plane under the influence of the gravity force.It is assumed that at every point of the considered material continuum, along with the conventional velocity vector v, there is defined an angular velocity vector , the internal moment stresses are negligibly small, and in the general case the force stress tensor kj is asymmetric. The model is characterized by the usual Newtonian viscosity , the Newtonian rolling viscosity r, and the relaxation time = J/4 r, where J is a scalar constant of the medium with dimensions of moment of inertia per unit mass, is the density. It is assumed that the medium is incompressible, the coefficients , r, J are constant [2].The exact solution of the equations of motion, corresponding to flow of a layer with a plane surface, coincides with the solution of the Navier-Stokes equations in the case of flow of a layer of Newtonian fluid. The equations for three-dimensional periodic disturbances differ considerably from the corresponding equations for the problem of the flow stability of a layer of a Newtonian medium. It is shown that the Squire theorem is valid for parallel flows of a Grad liquid.The flow stability of the layer with respect to long-wave disturbances is studied using the method of sequential approximations suggested in [3, 4].  相似文献   

9.
A conjugate problem of radiative–convective heat transfer in a turbulent hightemperature gasdisperse flow around a thermally thin ablating plate is considered. The plate experiences intense radiative heating by an external source, which is a blackbody. The temperature fields and the distributions of heat fluxes along the plate under unsteady conditions are calculated. The data gained make it possible to examine the effect of the Stark number and phasetransition heat in the plate material on the time evolution of the thermal state of the boundarylayer medium and the plate itself being heated by a hightemperature radiation source.  相似文献   

10.
At high supersonic velocities the specific heat ratio of the flow impinging on a body may change in connection with the considerable increase in stagnation temperature and chemical reactions (strictly speaking, in this case the flow can be described by means of the perfect gas model with an effective specific heat ratio ef; as a rule, gf<). This may entail a change in the point of laminar-tubulent boundary layer transition on the model. This paper is concerned with the determination of the effect of the specific heat ratio on boundary layer transition.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 179–183, March–April, 1989.The author wishes to thank M. I. Yaroslavtsev and V. A. Dmitriev for assisting with the experiments.  相似文献   

11.
The nonsymmetric penetration of a disk (circular cylinder) into a compressible fluid is investigated. The results are obtained by physical modeling. A fluid with a low speed of sound (finely dispersed medium with gas bubbles, whose dimensionless equation of state coincides with the dimensionless equation of state of water [5]) was used as the working medium. The experiments were carried out at entry angles on the interval 54 < < 88, angles of attack on the interval –15 < < +15 and Mach numbers on the interval 0.002 M 0.2.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 88–94, September–October, 1990.  相似文献   

12.
A study is made of the problem of isentropic compression of gas by a spherical shell of finite thickness on the exterior of which there is a vacuum. The complete solution to the problem with different boundary conditions and different equations of state for the shell and the compressible medium is possible only numerically. However, there exists a class of exact solutions to the equations of gas dynamics [1, 2] with linear radial distribution of the velocities of the particles in which contact discontinuities are allowed. For this it is necessary that both the shell and the compressible medium be described by the same equation of state p = ( – 1) E with the same specific heat ratio = cp/cv. There can be arbitrarily many such discontinuities in the solution, i.e., this class of solutions can describe the compression of matter by multilayer shells. In the present paper, a restriction is made to a single-layer shell with specific heat ratio = 5/3.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 176–179, November–December, 1982.  相似文献   

13.
The temperature field of starting thermal plumes were measured in a rotating annulus with various rotation rates and buoyancies. The experiments revealed many details of the internal structure of these convective phenomena and also significant horizontal displacements from their source. Measurements show an increase in the maximum temperature observed in the thermal caps with increasing rotation and a more rapid cooling of the buoyancy source.List of symbols D angle relating inward centripetal acceleration to buoyant acceleration, defined by tan D = R/g - g gravitational acceleration - P total pressure of ambient fluid - R radial coordinate measured from rotation axis - R 0 distance from rotation axis to buoyancy source - u velocity of fluid parcel along the radial direction - velocity of fluid parcel along the azimuthal direction - w velocity of fluid parcel along the axial direction - z axial coordinate, measured upward from the plane containing the buoyancy source - density of a buoyant parcel of fluid - 0 density of the ambient fluid - azimuthal angle measured from the radial line passing through the buoyancy source - rotation rate of the R––z coordinate system in radians/second  相似文献   

14.
It is proposed to investigate the stability of a plane axisymmetric flow with an angular velocity profile (r) such that the angular velocity is constant when r < rO – L and r > rO + L but varies monotonically from 1 to 2 near the point rO, the thickness of the transition zone being small L rO, whereas the change in velocity is not small ¦21¦ 2, 1. Obviously, as L O short-wave disturbances with respect to the azimuthal coordinate (k=m/rO 1/rO) will be unstable with a growth rate-close to the Kelvin—Helmholtz growth rate. In the case L=O (i.e., for a profile with a shear-discontinuity) we find the instability growth rate O and show that where the thickness of the discontinuity L is finite (but small) the growth rate does not differ from O up to terms proportional to kL 1 and 1/m 1. Using this example it is possible to investigate the effect of rotation on the flow stability. It is important to note that stabilization (or destabilization) of the flow in question by rotation occurs only for three-dimensional or axisymmetric perturbations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 111–114, January–February, 1985.  相似文献   

15.
The purpose of this study is the construction of interpolation formulas for the dependence of Maxwell viscosity, a quantity which is the reciprocal of shear-strain relaxation time , on shear-strain intensity and temperature for several metals: iron, aluminum, copper, and lead. This function was interpolated in various temperature and deformation velocity ranges in accordance with available experimental data for iron (0 107 sec–1, 200 ° T 1500 °); aluminum (0 107 sec–1, 300 ° T 900 °); copper (0 105 sec–1, 300 ° T 1300 °); lead (0 106 sec–1, 90 ° T 400 °); temperatures in °K.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 114–118, July–August, 1974.  相似文献   

16.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

17.
Based on a general assumption for plastic potential and yield surface, some properties of the nonassociated plasticity are studied, and the existence and uniqueness of the distribution of incremental stress and displacement for work-hardening materials are proved by using nonsymmetric Lax-Milgram lemma, when the work-hardening parameter A>F/Q/–F/, Q/.  相似文献   

18.
New asymptotic approaches for dynamical systems containing a power nonlinear term x n are proposed and analyzed. Two natural limiting cases are studied: n 1 + , 1 and n . In the firstcase, the 'small method' (SM)is used and its applicability for dynamical problems with the nonlinearterm sin as well as the usefulness of the SMfor the problem with small denominators are outlined. For n , a new asymptotic approach is proposed(conditionally we call it the 'large method' –LM). Error estimations lead to the followingconclusion: the LM may be used, even for smalln, whereas the SM has a narrow application area. Both of the discussed approaches overlap all values ofthe parameter n.  相似文献   

19.
The steady-state plane slowly varying flow of a completely ionized nonviscous quasi-neutral plasma in a shaped channel with continuous metal walls is considered. The Hall effect is taken into account. It is shown that for 1, where is the plasma parameter ( = 8p/B2, p is the gas-kinetic pressure of the plasma, and B is the magnetic field strength), the acceleration of the plasma is necessarily accompanied by the appearance of natural electromagnetic fields and an electric current, the distribution of which for small discharge voltages has an eddy-current form. The eddy currents disappear when the discharge voltage is increased. The acceleration of a plasma with isothermal electrons is investigated in detail.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 30–34, November–December, 1971.  相似文献   

20.
On laminar flow through a uniformly porous pipe   总被引:2,自引:0,他引:2  
Numerous investigations ([1] and [4–9]) have been made of laminar flow in a uniformly porous circular pipe with constant suction or injection applied at the wall. The object of this paper is to give a complete analysis of the numerical and theoretical solutions of this problem. It is shown that two solutions exist for all values of injection as well as the dual solutions for suction which had been noted by previous investigators. Analytical solutions are derived for large suction and injection; for large suction a viscous layer occurs at the wall while for large injection one solution has a viscous layer at the centre of the channel and the other has no viscous layer anywhere. Approximate analytic solutions are also given for small values of suction and injection.

Nomenclature

General r distance measured radially - z distance measured along axis of pipe - u velocity component in direction of z increasing - v velocity component in direction of r increasing - p pressure - density - coefficient of kinematic viscosity - a radius of pipe - V velocity of suction at the wall - r 2/a 2 - R wall or suction Reynolds number, Va/ - f() similarity function defined in (6) - u 0() eigensolution - U(0) a velocity at z=0 - K an arbitrary constant - B K Bernoulli numbers Particular Section 5 perturbation parameter, –2/R - 2 a constant, –K - x / - g(x) f()/ Section 6 perturbation parameter, –R/2 - 2 a constant, –K - g() f() - g c ()=g() near centre of pipe - * point where g()=0 Section 7 2/R - 2 K - t (1–)/ - w(t, ) [1–f(t)]/ - 0, 1 constants - g() f()– 0 - 0/ - 0 a constant - * point where f()=0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号