首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[structure: see text] Novel elongated push-push fluorophores (e.g., 9) were synthesized by 2-fold Sonogashira or Wittigminus signHorner reactions. Modulation of the length and topology of the conjugated connectors allows tuning of their photophysical properties. In addition, their photoluminescence can be adjusted by playing on polarity. Derivatives combining enhanced two-photon absorption cross section (sigma2) in the visible red and high fluorescence quantum yield (Phi) have been obtained. Such fluorophores hold promise for nonlinear imaging of biological systems.  相似文献   

2.
A series of rod‐shaped and related three‐branched push–pull derivatives containing phosphane oxide or phosphane sulfide (PO or PS)—as an electron‐withdrawing group conjugated to electron‐donating groups, such as amino or ether groups, with a conjugated rod consisting of arylene–vinylene or arylene–ethynylene building blocks—were prepared. These compounds were efficiently synthesized by a Grignard reaction followed by Sonogashira coupling. Their photophysical properties including absorption, emission, time‐resolved fluorescence, and two‐photon absorption (TPA) were investigated with special attention to structure–property relationships. These fluorophores show high fluorescence quantum yields and solvent‐dependent experiments reveal that efficient intramolecular charge transfer occurs upon excitation, thereby leading to highly polar excited states, the polarity of which can be significantly enhanced by playing on the end groups and conjugated linker. Rod‐shaped and related three‐branched systems show similar fluorescence properties in agreement with excitation localization on one of the push–pull branches. By using stronger electron donors or replacing the arylene–ethynylene linkers with an arylene–vinylene one induces significant redshifts of both the low‐energy one‐photon absorption and TPA bands. Interestingly, a major enhancement in TPA responses is observed, whereas OPA intensities are only weakly affected. Similarly, phosphane oxide derivatives show similar OPA responses than the corresponding sulfides but their TPA responses are significantly larger. Finally, the electronic coupling between dipolar branches promoted by common PO or PS acceptor moieties induces either slight enhancement of the TPA responses or broadening of the TPA band in the near infrared (NIR) region. Such behavior markedly contrasts with triphenylamine‐core‐mediated coupling, which gives evidence for the different types of interactions between branches.  相似文献   

3.
Four new star‐shaped π‐conjugated oligomers ( TPA‐CZ3 , TPA‐TPA3 , TPA‐PTZ3 and TPA‐BT3 ) with triphenylamine as a core and different electron‐donating ability groups, carbazole, triphenylamine, phenothiazine and bithiophene, as peripheral units have been designed and synthesized via the Heck reaction. These oligomers show good solubility in common organic solvents. Their photophysical, electrochemical, electronic structure and charge transfer properties between these star‐shaped π‐conjugated oligomers and N,N′‐bis(1‐ethylpropyl)‐3,4:9,10‐perylene bis(tetracarboxyl diimide) (EP‐PDI) have been investigated by UV‐vis absorption spectra, photoluminescence (PL) spectra, cyclic voltammetry (CV) measurement, theoretical calculations and fluorescence quenching. The results show that the absorptions and fluorescences of TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 are red shifted with the electron‐donating ability of the peripheral unit increasing from carbazole to triphenylamine and phenothiazine. In addition, although the bithiophene group has a weaker electron‐donating ability than carbazole, triphenylamine and phenothiazine, the absorption and fluorescence of TPA‐BT3 have a red shift than those of TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 because TPA‐BT3 has a longer conjugation length than TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 . The triphenylamine core and the peripheral units can constitute a large conjugated structure. The fluorescence quenching properties indicate that efficient charge transfer can happen between the star‐shaped oligomers and EP‐PDI.  相似文献   

4.
A series of octupolar fluorophores built from a triphenylamine (TPA) core connected to electron‐withdrawing (EW) peripheral groups through conjugated spacers has been synthesized. Their photoluminescence, solvatochromism, and two‐photon absorption (2PA) properties were systematically investigated to derive structure–property relationships. All derivatives exhibit two 2PA bands in the 700–1000 nm region: a first band at low energy correlated with a core‐to‐periphery intramolecular charge transfer that leads to an intense 1PA in the blue‐visible range, and a second more intense band at higher energy due to an efficient coupling of the branches through the TPA core. Increasing the strength of the EW end groups or the length of the conjugated spacers and replacing triple‐bond linkers with double bonds induces both enhancement and broadening of the 2PA responses, thereby leading to cross‐sections up to 2100 GM at peak and higher than 1000 GM over the whole 700–900 nm range. All derivatives exhibit intense photoluminescence (PL) in low‐ to medium‐polarity environments (with quantum yields in the 0.5–0.9 range) and display a strong positive solvatochromic behavior (with Lippert–Mataga specific shifts ranging from 15 000 to 27 500 cm?1), triple bonds, and phenyl moieties in the conjugated spacers, thereby leading to larger sensitivities than those of double bonds and thienyl moieties. More hydrophilic derivatives were also shown to be biocompatible, to retain their 2PA and PL properties in biological conditions, and finally to be suitable as polarity sensors for multiphoton cell imaging.  相似文献   

5.
A series of dipolar and octupolar triphenylamine-derived dyes containing a benzothiazole positioned in the matched or mismatched fashion have been designed and synthesized via palladium-catalyzed Sonogashira cross-coupling reactions. Linear and nonlinear optical properties of the designed molecules were tuned by an additional electron-withdrawing group (EWG) and by changing the relative positions of the donor and acceptor substituents on the heterocyclic ring. This allowed us to examine the effect of positional isomerism and extend the structure-property relationships useful in the engineering of novel heteroaromatic-based systems with enhanced two-photon absorption (TPA). The TPA cross-sections (δ(TPA)) in the target compounds dramatically increased with the branching of the triphenylamine core and with the strength of the auxiliary acceptor. In addition, a change from the commonly used polarity in push-pull benzothiazoles to a reverse one has been revealed as a particularly useful strategy (regioisomeric control) for enhancing TPA cross-sections and shifting the absorption and emission maxima to longer wavelengths. The maximum TPA cross-sections of the star-shaped three-branched triphenylamines are ~500-2300 GM in the near-infrared region (740-810 nm); thereby the molecular weight normalized δ(TPA)/MW values of the best performing dyes within the series (2.0-2.4 GM·g(-1)·mol) are comparable to those of the most efficient TPA chromophores reported to date. The large TPA cross-sections combined with high emission quantum yields and large Stokes shifts make these compounds excellent candidates for various TPA applications, including two-photon fluorescence microscopy.  相似文献   

6.
A new family of aryl-pi-donor-aryl molecules has been synthesized and studied with respect to their photophysical properties and electrogenerated chemiluminscence (ECL) for the first time. Anthracene, phenanthrene, naphthalene, biphenyl, and fluorene were coupled with N,N-dimethylanilino moiety via a C-C triple bond (1-7). Introduction of such a strong electron-donating moiety as N,N-dimethylanilino group through a triple bond imparts new properties to the resultant molecules that are not commonly observed for the parent arenes. All molecules show absorption in the near-visible region and emission totally in the visible region with high fluorescence quantum yields. Bright solid-state photoluminescence has also been noticed for all the compounds in the visible region. 9-Anthryl- and 1-naphthyl- derivatives exhibited blue-shifted electrochemiluminescence (ECL) relative to their photoluminescence because of aggregation. 9-Phenanthryl- and 2-naphthyl- derivatives did not show ECL. 2-Biphenyl derivative showed monomeric ECL while 4-biphenyl counterpart exhibited excimer ECL. No ECL was observed for 2-fluorenyl derivative. The observed electronic properties are discussed with regard to the structure of the molecules. The characteristics of the molecules chosen in the present study open up new prospects and promises for novel tunable organic materials, on the basis of simple extension of conjugation to promote intramolecular communication, for ECL, OLED, and other optoelectronic applications.  相似文献   

7.
Wei P  Bi X  Wu Z  Xu Z 《Organic letters》2005,7(15):3199-3202
[structure: see text]. A new series of dendritic two-photon absorbing chromophores containing triphenylamine moiety as a core or branching points have been synthesized through a convergent synthetic strategy. One-photon and two-photon optical properties of these molecules were characterized. In the nanosecond time domain, these molecules exhibited large two-photon absorption (TPA) cross sections up to 7.56-12.2 x 10(-44) s cm(4) at 800 nm, indicating that these molecular structures were viable candidates for various two-photon related applications.  相似文献   

8.
Three two‐photon absorption (TPA) tribranched chromophores were successfully prepared, in which 1,3,5‐triazine is been as electron deficient core, 1,4‐phenylenedivinylene as conjugated bridge, 3,4‐ethylenedioxythiophene (EDOT) ( T1 ), N‐methylpyrrole ( T2 ) or triphenylamine ( T3 ) as electron‐donating end‐groups. Their photophysical properties were studied by absorption, one‐ and two‐photon fluorescence and TPA cross‐section determination. The nonlinear transmission (NLT) measurement in femtoseconds (fs) regime at 800 nm indicates that TPA cross‐section (2 values of T1 , T2 and T3 with extended Π‐conjugated bridge are much larger than the corresponding chromophore T4 with a short length bridge, and TPA cross‐section of T1 with end‐groups EDOT exhibits a remarkable enhancement compared with T2 and T3 having the same length Π‐system. The chromophores T1 , T2 and T3 show also remarkable up‐converted luminescence and optical limiting activity.  相似文献   

9.
Three novel conjugated polymers with N‐arylpyrrole as the conjugated bridge were designed and synthesized, which emitted strong one‐ or two‐photon excitation fluorescence in dilute tetrahydrofuran (THF) solution with high quantum yields. The maximal two‐photon absorption (TPA) cross‐sections of the polymers, measured by the two‐photon‐induced fluorescence method using femtosecond laser pulses in THF, were 752, 1114, and 1869 GM, respectively, indicating that the insertion of electron‐donating or electron‐withdrawing moieties into the polymer backbone could benefit to the increase of the TPA cross‐section. Their large TPA cross‐sections, coupled with the relatively high emission quantum yields, made these conjugated polymers attractive for practical applications, especially two‐photon excited fluorescence. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Carbon dots(CDs) have been considered as a marvellous photoluminescence(PL) material, and their PL mechanism remains debatable. The carbon core, as an essential part of CDs, apparently plays an intricate role in the PL of CDs. However, the influence of the core on the PL and the relationship between the core and fluorescence moiety are still unclear. Here, we investigated the influence of carbon cores with different sizes on the rotational motion of fluorescence moieties to determine the relationship between carbon cores and fluorescence moieties. CDs with different size distributions were synthesized by controlling carbonization time. The core sizes and rotational correlation time(RCT) of the CD samples were measured by transmission electron microscopy(TEM) and fluorescence anisotropy measurement, respectively. And the rotating unit radius were calculated from the RCT. The experimental results show that the rotational motion of the fluorescence moiety is independent of the carbon core sizes and it possesses total rotational freedom. This work is helpful for understanding the connection between the carbon core and fluorescence moiety and its influence on the PL properties of CDs.  相似文献   

11.
Two series of related donor–acceptor conjugated dipolar, pseudo‐quadrupolar (V‐shaped) and octupolar molecular systems based on the p‐dimesitylborylphenylethynylaniline core, namely, 4‐(4‐dimesitylborylphenylethynyl)‐N,N‐dimethylaniline, 4‐[4‐(4‐dimesitylborylphenylethynyl)phenylethynyl]‐N,N‐dimethylaniline, 3,6‐bis(4‐dimesitylborylphenylethynyl)‐Nn‐butylcarbazole and tris[4‐(4‐dimesitylborylphenylethynyl)phenyl]amine, and on the E‐p‐dimesitylborylethenylaniline motif, namely, E‐4‐dimesitylborylethenyl‐N,N‐di(4‐tolyl)aniline, 3,6‐bis(E‐dimesitylborylethenyl)‐Nn‐butylcarbazole and tris(E‐4‐dimesitylborylethenylphenyl)amine have been synthesised by palladium‐catalyzed cross‐coupling and hydroboration routes, respectively. Their absorption and emission maxima, fluorescence lifetimes and quantum yields have been obtained and their two‐photon absorption (TPA) spectra and TPA cross‐sections have been examined. Of these systems, the octupolar compound tris(E‐4‐dimesitylborylethenylphenyl)amine has been shown to exhibit the largest TPA cross‐section among the two series of approximately 1000 GM at 740 nm. Its TPA performance is comparable to those of other triphenylamine‐based octupoles of similar size. The combination of such large TPA cross‐sections and high emission quantum yields, up to 0.94, make these systems attractive for applications involving two‐photon excited fluorescence (TPEF).  相似文献   

12.
氧芴三苯胺多枝分子的双光子吸收与电化学行为   总被引:1,自引:1,他引:0  
研究了3个氧芴/三苯胺衍生物: E-2,8-双(4-二苯胺基苯乙烯基)氧芴(简称OT-G1)、E-2,8-双[4-(二苯基氨基-二苯乙烯基)(4’-溴苯基)氨基-苯乙烯基]氧芴(简称OT-G1.5)和E-2,8-双-[4’,4″-二-(二苯胺基苯乙烯基)-4-二苯胺基苯乙烯基]氧芴(简称OT-G2)的双光子吸收和电化学行为. 研究结果表明, 分子“代数”从1→1.5→2增高, 氧芴三苯胺多枝分子的HOMO能级升高、双光子荧光强度和双光子吸收截面明显增大. 由于HOMO能级的升高有利于分子的电荷转移, 因而分子表现出强的双光子吸收能力, 这表明可通过电化学行为来推断出分子的双光子吸收性能.  相似文献   

13.
White-light emission (WLE) from a single molecule is a highly desirable alternative to a complex mixture of complementary colour emitters, which suffers from poor stability and reproducibility for potential use in organic electronic devices and lighting applications. We report single-molecule WLE both in solution and thin films by judiciously controlled π-electron delocalisation between the triarylamine subchromophoric units. Triphenylamine (TPA) forms the central core, and the phenyl rings are substituted with the electron-deficient acceptor 3-ethylrhodanine (Rh) and electron-rich donors triphenylamine or carbazole. The enforced biphenyl configuration of the TPA core and the other donors renders the π-conjugation across the entire chromophore poor, thus the individual subchromophoric units retain their individual emission characteristics, which cover all three primary colour emissions, that is, red, green and blue (RGB). TPA−Rh units exhibit broad fluorescence in the green-red region originating from the local excited (LE) state and intramolecular charge transfer state (ICT), strongly influenced by the solvent, water, and temperature. Different fluorescence parameters, including spectral maxima, ratiometric changes in ICT emission at the expense of blue emission from terminal donor units, and changes in lifetime, have a linear relationship with temperature between 180–330 K, thus the molecules can function as a multiparameter luminescent molecular thermometer. A temperature coefficient of 0.19 K−1 in ratiometric fluorescence changes along with a spectral shift of 0.3 nm K−1 and their workability over the wide temperature makes these molecules promising materials for potential applications. At lower temperatures, individual subchromophoric properties subside because of the reduced dihedral angle of biphenyl, and fluorescence from the whole molecule becomes dominant.  相似文献   

14.
The geometrical structure, electronic structure, one-photon absorption (OPA) and two-photon absorption (TPA) properties of the perylene tetracarboxylic derivatives (PTCDs) were studied theoretically by using density functional theory (DFT) and Zerner's intermediate neglect of differential overlap (ZINDO) methods. The results revealed that increasing the number of naphthalene nucleus, extending the conjugated length on long axis, increasing the strength of donor group on lateral side, decreasing the DeltaE(H-L) (energy gap between the highest occupied orbital and the lowest unoccupied orbital) and keeping the conjugation effect and inductive effect along the same molecular axis are the efficient ways to enlarge TPA cross section of PTCDs compounds. The results that PTCDs compounds exhibited extremely large TPA cross section of around 800-1100 nm (near infrared region) shed light into the significance of the PTCDs compounds for applications in TPA labeling materials in vivo.  相似文献   

15.
Two alternative copolymers of thieno[3,4b]pyrazine (TPZ) and triphenylamine (TPA) or phenylene (Ph), P(TPA‐TPZ) and P(Ph‐TPZ), were synthesized by Wittig–Horner polycondensation and characterized by 1H NMR, elemental analysis, GPC, TGA, cyclic voltammetry, UV–Vis absorption, and photoluminescence (PL) spectroscopy. The polymers are soluble in common organic solvents and possess good thermal stability. Both of them shows strong solvatochromism phenomenon when dissolved in different solvents. The fluorescence of the copolymer solutions is efficiently quenched upon the addition of Hg2+, indicating that the two copolymers could be good Hg2+ detectors. More interestingly, the copolymers show high selectivity for the Hg2+ detection and P(TPA‐TPZ) shows higher sensitivity and selectivity toward the Hg2+ detection than P(Ph‐TPZ) does in the presence of other competing metal ions. The results imply that the conjugated polymers (CPs) containing the thieno[3,4b]pyrazine moiety are promising materials for chemosensors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Bright emission of organic luminogens at aggregated state has attracted increasing attention for their potential applications in opto-electronic devices and bio-/chemo-sensors. In this article, upon the introduction of different substituents(Br, Ph and TPh) to the large conjugated core of 9-methyl-9H-dibenzo[a,c]carbazole(DBC) moiety, the resultant luminogens demonstrated PL quantum yields in solid state ranging from 4.81% to 47.39%. Through the systematic investigation of molecular packing,together with theory calculation, the strong intermolecular electronic coupling in the dimers is proved as the main factor to the bright emission in the solid state. The results afforded a new avenue to investigate the intrinsic relationship among the molecular structures, packing modes and emission properties.  相似文献   

17.
Molecular rods consisting of a hydrophobic backbone and terminally varying functional groups have been synthesized for applications for the functionalization of membranes. In the present study, we employ a spin‐labeled analogue of a recently described new class of molecular rods to characterize their dynamic interactions with membranes. By using the different approaches of ESR and NMR spectroscopy, we show that the spin moiety of the membrane‐embedded spin‐labeled rod is localized in the upper chain/glycerol region of membranes of different compositions. The rod is embedded within the membrane in a tilted orientation to adjust for the varying hydrophobic thicknesses of these bilayers. This orientation does not perturb the membrane structure. The water solubility of the rod is increased significantly in the presence of certain cyclodextrins. These cyclodextrins also allow the rods to be extracted from the membrane and incorporated into preformed membranes. The latter will improve the future applications of these rods in cellular systems as stable membrane‐associated anchors for the functionalization of membrane surfaces.  相似文献   

18.
Developing organic chromophores with large two‐photon absorption (TPA) in both organic solvents and aqueous media is crucial owing to their applications in solid‐state photonic devices and biological imaging. Herein, a series of novel terpyridine‐based quadrupolar derivatives have been synthesized. The influences of electron‐donating group, type of conjugated bridge, as well as solvent polarity on the molecular TPA properties have been investigated in detail. In contrast to the case in organic solvents, bis(thienyl)‐benzothiadiazole as a rigid conjugated bridge will completely quench molecular two‐photon emission in aqueous media. However, the combination of alkylcarbazole as the donor and bis(styryl)benzene as a conjugation bridge can enlarge molecular TPA cross‐sections in both organic solvent and aqueous media. The reasonable two‐photon emission brightness for the organic nanoparticles of chromophores 3 – 5 in the aqueous media, prepared by the reprecipitation method, enables them to be used as probes for in vivo biological imaging.  相似文献   

19.
Optically active, Fréchet‐type dendrimers containing an emissive X‐shaped π‐electron system as the core unit were synthesized. Gram‐scale optical resolution and transformations of 4,7,12,15‐tetrasubstituted [2.2]paracyclophanes were also carried out. The high‐generation dendrons effectively absorbed UV light and transferred energy to the core, resulting in high photoluminescence (PL) from the core. In addition, the dendrons sufficiently isolated the emissive X‐shaped conjugated core and bright emission was observed from both thin films and solutions. Intense circularly polarized luminescence (CPL) was observed from the thin film. The dendrimer films exhibited excellent optical properties, such as large molar extinction coefficients, high fluorescence quantum efficiencies, intense PL and CPL, and large CPL dissymmetry factors.  相似文献   

20.
Two-photon excited fluorescent (TPEF) materials are highly desirable for bioimaging applications owing to their unique characteristics of deep-tissue penetration and high spatiotemporal resolution. Herein, by connecting one, two, or three electron-deficient zinc porphyrin units to an electron-rich triazatruxene core via ethynyl π-bridges, conjugated multipolar molecules TAT-(ZnP) n (n=1–3) were developed as TPEF materials for cell imaging. The three new dyes present high fluorescence quantum yields (0.40–0.47) and rationally improved two-photon absorption (TPA) properties. In particular, the peak TPA cross section of TAT-ZnP (436 GM) is significantly larger than that of the ZnP reference (59 GM). The δTPA values of TAT-(ZnP)2 and TAT-(ZnP)3 further increase to 1031 and up to 1496 GM, respectively, indicating the effect of incorporated ZnP units on the TPA properties. The substantial improvement of the TPEF properties is attributed to the formation of π-conjugated quadrapole/octupole molecules and the extension of D -π-A-D systems, which has been rationalized by density function theory (DFT) calculations. Moreover, all of the three new dyes display good biocompatibility and preferential targeting ability toward cytomembrane, thus can be superior candidates for TPEF imaging of living cells. Overall, this work demonstrated a promising strategy for the development of porphyrin-based TPEF materials by the construction and extension of D -π-A-D multipolar array.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号