首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dichromium oxide clusters, Cr2O2, Cr2O4, and Cr2O6, have been prepared and characterized by matrix isolation infrared spectroscopy and quantum chemical calculations. Laser-evaporated chromium atoms reacted with O2 in solid argon to form the previously characterized CrO2 molecules, which further reacted with chromium atoms to form Cr2O2 spontaneously on annealing. The Cr2O2 cluster is determined to have a chainlike CrOCrO structure. The rhombic ring isomer, which was predicted to be more stable than the CrOCrO structure, was not formed at the present experimental conditions. The Cr2O4 cluster was formed from the barrierless dimerization of the chromium dioxide molecules, which is characterized to have a planar D2h symmetry. TheCr2O6 cluster was produced under UV light irradiation. It is determined to have a singlet ground state with a nonplanar D2h symmetry.  相似文献   

2.
The reactions of group V metal dioxide molecules with dihydrogen have been studied by matrix isolation infrared spectroscopy. The ground state VO(2) molecule is able to cleave dihydrogen heterolytically and spontaneously in forming the HVO(OH) molecule in solid argon. In contrast, the reaction of VO(2) with dideuterium to form DVO(OD) proceeds only under UV-visible excitation via a weakly bound VO(2)(η(2)-D(2)) complex. Theoretical calculations predict that the dihydrogen cleavage process is thermodynamically exothermic with a small barrier. The niobium and tantalum dioxide molecules react with dihydrogen to give primarily the side-on bonded metal dioxide bis-dihydrogen complexes, NbO(2)(η(2)-H(2))(2) and TaO(2)(η(2)-H(2))(2), which are further transferred to the HNbO(OH) and HTaO(OH) molecules via photoisomerization in combination with H(2) elimination under UV-visible light excitation.  相似文献   

3.
The reactions of tantalum monoxide (TaO) and dioxide (TaO(2)) molecules with methanol in solid neon were investigated by infrared absorption spectroscopy. The ground-state TaO molecule reacted with CH(3)OH in forming the CH(3)OTa(O)H molecule via the hydroxylic hydrogen atom transfer from methanol to the metal center spontaneously on annealing. The observation of the spontaneous reaction is consistent with theoretical predictions that the OH bond activation process is both thermodynamically exothermic and kinetically facile. In contrast, the TaO(2) molecule reacted with CH(3)OH to give primarily the TaO(2)(CH(3)OH) complex, which further rearranged to the CH(3)OTa(O)OH isomer via the hydroxylic hydrogen atom transfer from methanol to one of oxygen atom of metal dioxide upon visible light excitation.  相似文献   

4.
Binary nickel, palladium, and platinum nitrous oxide complexes Ni(NNO)x, Pd(NNO)x (x = 1, 2), and PtNNO have been produced by the reactions of laser-evaporated metal atoms with nitrous oxide in solid argon. The complexes were identified on the basis of isotopically substituted infrared absorptions as well as theoretical frequency calculations. These complexes were characterized to have structures with the terminal N atom of N(2)O bound to the metal atoms. The MNNO complexes are photosensitive and rearrange to OMNN or MO + N(2) upon ultraviolet-visible irradiation.  相似文献   

5.
Reactions of rhodium atoms with dioxygen molecules in solid argon have been investigated using matrix isolation infrared absorption spectroscopy. The rhodium-dioxygen complexes, Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO), are produced spontaneously on annealing. The Rh(eta2-O2) complex rearranges to the inserted RhO2 molecule under visible light irradiation. Experiments doped with xenon in argon show that the rhodium-dioxygen complexes are coordinated by one or two noble gas atoms in solid noble gas matrixes. Hence, the Rh(eta2-O2), Rh(eta2-O2)2, and Rh(eta2-O2)2(eta1-OO) molecules trapped in solid noble gas matrixes should be regarded as the Rh(eta2-O2)(Ng)2, Rh(eta2-O2)2(Ng)2, and Rh(eta2-O2)2(eta1-OO)(Ng) (Ng = Ar or Xe) complexes. The product absorptions are identified on the basis of isotopic substitution and density functional theory calculations.  相似文献   

6.
The reactions of titanium monoxide and dioxide molecules with carbon dioxide were investigated by matrix isolation infrared spectroscopy. It was found that the titanium monoxide molecule is able to activate carbon dioxide to form the titanium dioxide-carbon monoxide complex upon visible light excitation via a weakly bound TiO(η(1)-OCO) intermediate in solid neon. In contrast, the titanium dioxide molecule reacted with carbon dioxide to form the titanium monoxide-carbonate complex spontaneously on annealing. Theoretical calculations predicted that both activation processes are thermodynamically exothermic and kinetically facile.  相似文献   

7.
The reaction of boron dioxide with water molecule has been studied using matrix isolation infrared spectroscopy. The boron dioxide molecules produced by codeposition of laser-evaporated boron atoms with dioxygen react spontaneously with water molecules to form OB(OH)2, which is characterized to have a doublet ground-state with two OH groups in the cis-trans form. Isotopic substitution results indicate that the hydrolysis process proceeds via a concerted two hydrogen atom transfer mechanism. The cis-trans-OB(OH)2 molecule is photosensitive; it decomposes to the OH x OB(OH) complex upon broadband UV-visible irradiation. The OH x OB(OH) complex is determined to have a (2)A' ground-state with a bent C(s) symmetry, in which the terminal oxygen atom of the OB(OH) fragment is hydrogen bonded with the hydroxyl radical. The OH x OB(OH) complex recombines to the cis-trans-OB(OH)2 molecule upon sample annealing.  相似文献   

8.
The preferred conformations of dimethyl sulfite and their vibrational spectra were studied by matrix-isolation Fourier transform infrared spectroscopy and theoretical methods (density functional theory (DFT) and Moller-Plesset (MP2), with basis sets of different sizes, including the quadruple-zeta, aug-cc-pVQZ basis). Five minima were found at these levels of theory. At the MP2/6-31++G(d,p) and DFT/B3LYP/aug-cc-pVQPZ levels, the GG conformer (where the O-S-O-C dihedral angles are 73.2 and 70.8 degrees ) resulted in the conformational ground state. At the highest level of theory used, the GT conformer (O-S-O-C = +68.5 and -173.2 degrees ) is 0.83 kJ mol(-1) higher in energy than the GG form, while conformer GG' (O-S-O-C = +85.7 and -85.7 degrees ) has a relative energy of 1.18 kJ mol(-1). The remaining two conformers (G'T and TT) are high-energy forms and not experimentally relevant. In consonance with the theoretical predictions, conformer GG was found to be the most stable conformer in the gaseous phase as well as in the low-temperature matrices. Annealing of the argon matrices first promotes the GG'-->GT isomerization, which is followed by conversion of GT into the most stable conformer. There is no evidence of occurrence of GG'-->GG direct conversion in the low-temperature matrices. On the other hand, during deposition of the xenon matrices conformer GG' totally converts to conformer GT. Two observations demonstrated this fact: no evidence of bands corresponding to GG' were observed in xenon matrices and the GG/GT intensity ratio became similar to the GG/(GT + GG') intensity ratio observed in argon matrices. All these results could be explained by taking into account the relative values of the theoretically predicted energy barriers for the different isomerization processes: GG'-->GT, 1.90 kJ mol(-1); GT-->GG, 9.64 kJ mol(-1); and GG'-->GG, 19.46 kJ mol(-1).  相似文献   

9.
Rui Yang  Yu Gong  Mingfei Zhou   《Chemical physics》2007,340(1-3):134-140
The reaction products of palladium atoms with molecular oxygen in solid argon have been investigated using matrix isolation infrared absorption spectroscopy and quantum chemical calculations. In addition to the previously reported mononuclear palladium–dioxygen complexes: Pd(η2–O2) and Pd(η2–O2)2, dinuclear palladium–dioxygen complexes: Pd22–O2) and Pd22–O2)2 were formed under visible light irradiation and were identified on the basis of isotopic substitution and theoretical calculations. In addition, experiments doped with xenon in argon coupled with theoretical calculations suggest that the Pd(η2–O2), Pd22–O2) and Pd22–O2)2 complexes are coordinated by two argon or xenon atoms in solid argon matrix, and therefore, should be regarded as the Pd(η2–O2)(Ng)2, Pd22–O2)(Ng)2 and Pd22–O2)2(Ng)2 (NgAr or Xe) complexes isolated in solid argon.  相似文献   

10.
The reactions of late lanthanide metal atoms (Gd-Lu) with water molecules have been investigated using matrix isolation infrared spectroscopy. The reaction intermediates and products were identified on the basis of isotopic substitution experiments and density functional theory calculations. All of the metal atoms except Lu react with water to form the M(H2O) complexes spontaneously upon annealing (M = Gd, Tb, Dy, Ho, Er, Tm, and Yb). The Dy(H2O) and Ho(H2O) complexes are able to coordinate a second water molecule to form the Dy(H2O)2 and Ho(H2O)2 complexes. The M(H2O) complexes isomerize to the inserted HMOH isomers under visible light irradiation, which further decompose to give the MO and/or HMO molecules upon UV light irradiation. The M(OH)2 molecules (M = Gd-Lu) were also produced. The results have been compared with our earlier work covering the early lanthanide metal atoms (Nd, Sm, Eu) to observe the existent trends for the lanthanide metal atom reactions.  相似文献   

11.
The difluoroamino coinage metal fluoride molecules F(2)NMF (M = Cu, Ag, Au) have been made via spontaneous reactions of coinage metals and NF(3) in solid argon and neon matrixes during sample annealing without formation of the M(NF(3)) complexes. Comparisons between the matrix infrared spectra and the density functional frequency calculations provide strong support for identification of the F(2)NMF molecules, which are found to have doublet ground states with C(2v) or near C(2v) geometries. The F(2)NCuF molecule can isomerize to the less stable FNCuF(2) isomer upon UV-visible irradiation, while no similar reactions were observed for the silver and gold species. The M-N bonds in the F(2)NMF molecules are stronger than those in the FNMF(2) isomers with the Ag-N bond being longest and weakest in both cases.  相似文献   

12.
The reactions of laser-ablated late lanthanide atoms and methanol were studied using matrix isolation infrared spectroscopy and electronic structure calculations at the density functional theory level. Both terbium and lutetium atoms react with methanol spontaneously to form the CH(3)OTbH and CH(3)OLuH insertion products, which react further with another methanol molecule to give the Tb(OCH(3))(2) and Lu(OCH(3))(2) products as found previously for uranium. The reactions of Dy through Yb and methanol first produce Ln(CH(3)OH) complexes during sample annealing, which isomerize to the CH(3)OLnH insertion products on visible irradiation. The Ln-H stretching frequencies of the CH(3)OLnH molecules exhibit a unique trend from Tb to Lu, which is also reproduced by theoretical calculations at the B3LYP level of theory. Although the CH(3)LnOH molecules are predicted to be more stable than the O-H bond insertion products, formation of the C-O bond insertion isomers is kinetically prohibited as revealed by calculated potential energy surfaces.  相似文献   

13.
The reaction of vinyl radical with molecular oxygen in solid argon has been studied using matrix isolation infrared absorption spectroscopy. The vinyl radical was produced through high frequency discharge of ethylene. The vinyl radical reacted with oxygen spontaneously on annealing to form the vinylperoxy radical C(2)H(3)OO with the O-O bond in a trans position relative to the C-C bond, which is characterized by O-O stretching and out-of-plane CH(2) bending vibrations at 1140.7 and 875.5 cm(-1). The vinylperoxy radical underwent visible photon-induced dissociation to the CH(2)OH(CO) complex or CH(2)OH+CO, which has never been considered in previous studies. The CH(2)OH(CO) product was predicted to be more thermodynamically accessible than the previously reported major HCO+H(2)CO channel, and is most likely produced by hydrogen atom transfer from the first-formed H(2)CO-HCO pair in solid argon.  相似文献   

14.
Reactions of titanium monoxides with methane have been investigated using matrix isolation infrared spectroscopy and theoretical calculations. Titanium derivatives of several simple oxyhydrocarbons have been prepared and identified. The titanium monoxide molecules prepared by laser evaporation of bulk TiO2 target reacted with methane to form the TiO(CH4) complex in solid argon, which was predicted to have C3v symmetry with the oxygen atom coordinated to one hydrogen atom of the methane molecule. The complex rearranged to the CH3Ti(O)H titano-acetaldehyde molecule upon visible (lambda > 500 nm) irradiation. The titano-acetaldehyde molecule sustained further photochemical rearrangement to the CH2Ti(H)OH titano-vinyl alcohol molecule, which was characterized to be a simple carbene complex involving agostic bonding. The CH2Ti(H)OH molecule reacted with a second methane to form the (CH3)2Ti(H)OH titano-isopropyl alcohol molecule spontaneously on annealing. The (CH3)2Ti(H)OH molecule also can be produced via UV photon-induced rearrangement of the CH3Ti(O)H(CH4) complex.  相似文献   

15.
The reactions between CrO2Cl2 and a series of substituted phosphines have been investigated using matrix isolation infrared spectroscopy. For all of the phosphines except PF3, twin jet co-deposition of the two reagents into argon matrices at 14 K initially led to the formation of weak bands due to the corresponding phosphine oxide. For all of the phosphines, subsequent irradiation with light of lambda > 300 nm led to the growth of a number of intense new bands that have been assigned to the phosphine oxide complexed to CrCl2O, following an oxygen atom transfer reaction. Gas-phase, merged jet reactions prior to matrix deposition led to a significant yield of the uncomplexed phosphine oxide. Theoretical calculations at the B3LYP/6-311++g(d,2p) level were carried out in support of the experimental work, to support product band assignments and clarify the nature of the molecular complexes.  相似文献   

16.
The matrix-isolation technique has been combined with infrared spectroscopy to identify and characterize the products formed by irradiation of cage-paired CrCl(2)O(2) and a series of chloroethenes, C(2)H(x)()Cl(y)() (x + y = 4). For each system, oxygen-atom transfer occurred upon irradiation, yielding the corresponding acetyl chloride derivative and the Cl(2)CrO species. The products were formed in the same matrix cage and strongly interacted to form a distinct molecular complex after formation. Three different modes of interaction were explored computationally: eta(1) to the oxygen atom, eta(2) to the C=O bond, and eta(1) to the chlorine atom. In addition, a five-membered metallocycle and the chloroepoxide species were considered. No evidence was obtained for the chloroacetaldehyde derivative, indicating the occurrence of oxygen-atom attack at the more substituted carbon of the chloroethene. Evidence tentatively supporting the formation of the metallocycle was obtained as well. Theoretical calculations indicated that the acetyl chloride derivative was approximately 10 kcal/mol more stable than the corresponding chloroacetaldehyde species for each system at the B3LYP/6-311++g(d,2p) level of theory. The binding energy of each of the complexes was also found to be near 10 kcal/mol at this level of theory.  相似文献   

17.
Laser-ablated lanthanum atoms have been codeposited at 4 K with acetylene in excess argon. Products, La(C 2H 2), LaCCH 2, HLaCCH, and La 2(C 2H 2), have been formed in the present experiments and characterized using infrared spectroscopy on the basis of the results of the isotopic shifts, mixed isotopic splitting patterns, stepwise annealing, the change of reagent concentration and laser energy, and the comparison with theoretical predictions. Density functional theory calculations have been performed on these molecules. The agreement between the experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts supports the identification of these molecules from the matrix infrared spectra. Plausible reaction mechanisms have been proposed to account for the formation of these molecules.  相似文献   

18.
The ZnP, (67)ZnP, CdP, (111)CdP, and (113)CdP radicals have been formed by laser ablation of the metal with GaP pressed into the metal surface, isolated in an inert neon matrix at 4.3 K and their electronic structure was established using electron spin resonance spectroscopy. The following magnetic parameters were determined experimentally for ZnP/(67)ZnP, g(⊥)=1.9982(2), A(⊥)(P)=111(6)?MHz, A(⊥)((67)Zn)=160(2)?MHz, and D=-29?988(3)?MHz and estimates were made for the following ZnP/(67)ZnP magnetic parameters: g(∥)=1.9941(2), A(∥)(P)=-5(6)?MHz, and A(∥)((67)Zn)=180(50)?MHz. The following magnetic parameters for CdP/(111)CdP/(113)CdP were determined experimentally: g(⊥)=1.9963(2), A(⊥)(P)=97(3)?MHz, A(⊥)((111)Cd)=862(3)?MHz, and A(⊥)((113)Cd)=902(3)?MHz. Evidence for the formation of the MgP radical was also obtained and an approximate hyperfine coupling constant of A(⊥)(P)=157(6)?MHz was determined. The low-lying electronic states of ZnP and MgP were also investigated using the multiconfigurational self-consistent field technique. Potential energy surfaces, binding energies, optimized bond lengths, energy separations, and dissociation energies have been determined. Both radicals are found to have (4)Σ(-) ground states with a leading configuration at r(e) of 10σ(2)11σ(2)5π(1)5π(1)12σ(1) for ZnP and 7σ(2)8σ(2)3π(1)3π(1)9σ(1) for MgP. Significant mixing to this state is calculated for MgP.  相似文献   

19.
The reactions of niobium and tantalum monoxides and dioxides with methane have been investigated using matrix isolation infrared spectroscopic and theoretical calculations. The niobium and tantalum oxide molecules were prepared by laser evaporation of Nb(2)O(5) and Ta(2)O(5) bulk targets. The niobium monoxide molecule interacted with methane to form the ONb(CH(4)) complex, which was predicted to have C(3)(v)() symmetry with the metal atom coordinated to three hydrogen atoms of the methane molecule. The ONb(CH(4)) complex rearranged to the CH(3)Nb(O)H isomer upon 300 nm < lambda < 580 nm irradiation. The analogous OTa(CH(4)) complex was not observed, but the CH(3)Ta(O)H molecule was produced upon UV irradiation. The niobium and tantalum dioxide molecules reacted with methane to form the O(2)Nb(CH(4)) and O(2)Ta(CH(4)) complexes with C(s)() symmetry, which underwent photochemical rearrangement to the CH(3)Nb(O)OH and CH(3)Ta(O)OH isomers upon ultraviolet irradiation.  相似文献   

20.
Infrared spectra of three new thorium oxide species have been obtained in argon and neon matrixes. All of the products are experimentally characterized using isotopic oxygen samples with the aid of electronic structure calculations. Ground state thorium atoms react with O(2) to form the ThO(2) molecules, which can dimerize to give Th(2)O(4) products. Th(2)O(4) is predicted to have nonplanar C(2h) symmetry for its closed shell singlet ground state. The rhombus-shaped Th(2)O(2) molecule in the (1)A(g) (D(2h)) ground state is also observed and its formation is proposed via the reaction of Th(2) with O(2). In addition, electron capture of neutral thorium dioxide results in the formation of the ThO(2)(-) anion. It is predicted to have a doublet ground state with a geometry similar to that of the neutral ThO(2) molecule. Electronic structure calculations on the unobserved Th(2)O and Th(2)O(3) molecules are also provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号