首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
骨组织工程及可吸收高分子支架的研究进展   总被引:8,自引:0,他引:8  
从常用的材料、支架的作用、支架的选择、支架的制备方法以及对支架材料的生物相容性和生物降解性的研究几个方面综述了骨组织工程中可吸收高分子支架及材料的研究进展。  相似文献   

2.
可注射性骨组织工程支架材料不饱和聚磷酸酯的合成   总被引:6,自引:0,他引:6  
以富马酸、1,2-丙二醇和三氯氧磷为起始原料,合成了主链重复结构单元中含不饱和双键的聚磷酸酯.FTIR及NMR研究表明.不饱和聚磷酸酯(UPPE)主链结构中含有富马酸二(1,2-丙二醇)酯(BPGF)的三种异构体.利用GPC研究了反应时间对聚合反应的影响,结果表明,延长反应时间有利于提高分子量,聚合物趋向于单分散性.反应18 h后,聚合物重均分子量达到5 956 g/mol,分散度为1.12.通过测定UPPE与N-乙烯基吡咯烷酮(NVP)的交联温度曲线,确定交联反应最高温度为41.14-82.30℃,固化时间在1.95-10.28 m in之间.  相似文献   

3.
冠脉介入支架治疗技术发展至今已有30余年,从裸金属支架发展到药物洗脱支架乃至今天新兴的生物可吸收支架,不断的推动着冠心病介入治疗向前进步。生物可吸收支架的理念是治疗后无异物留体内。总的来讲,支架开通并保持狭窄或堵塞血管畅通的使命在血管修复后即完成,此后最理想的状态便是支架也随之消失。生物可吸收高分子支架(Bioresorbable Polymeric Scaffold,BRPS)由于使用的材料不仅可以人为地设计和改性,而且是药物的良好载体,因此成为该领域研究的热点。本文从材料、结构设计、加工工艺等方面介绍了BRPS的研究进展,重点讨论了激光切割和3D打印制备BRPS的两种方法,以及BRPS的降解性能及要求,最后对BRPS面临的挑战及发展方向做了展望。  相似文献   

4.
介入治疗用非血管可降解支架的研究进展   总被引:1,自引:0,他引:1  
介入治疗是介于外科和内科治疗之间的新兴治疗方法,其中用于胆管、食管和气管等官腔的支架属于非血管介入治疗。非血管可降解支架与官腔具有良好的生物相容性,并且支架置入人体后,可以在一定时间内降解,转化为对人体无害的小分子排除体外。本文综述了介入治疗用非血管可降解支架的研究进展,重点介绍了非血管可降解支架的材料选择,外形设计,支架工艺(包括支架成型,覆膜改性,载药处理),性能测试(包括物理性能,力学性能,生物相容性,降解性能等)及临床应用进展。  相似文献   

5.
本文在可降解型聚氨酯分子设计,聚氨酯型组织工程支架制备方法,可降解聚氨酯多孔支架的生物学性能及可降解聚氨酯多孔支架在组织工程中的应用等几个方面对可降解聚氨酯型组织工程支架的最新研究进展作了综述。重点讨论了静电纺丝、冷冻干燥、相分离等几种聚氨酯多孔支架制备方法以及聚氨酯型组织工程支架的生物降解性质、生长因子嵌入、生物力学性能、生物相容性等生物学性能。目前的研究表明通过聚氨酯分子设计与各种支架制备方法结合可制得满足各种生物学性能的支架材料且这类材料已被证实在血管、软骨、硬质骨等各类组织工程中有重要的应用价值。但如何进一步提高聚氨酯支架材料的力学强度以使其能更好地与硬组织的力学性能相匹配以及如何降低或消除聚氨酯对人体的毒性仍是需要进一步研究的问题。  相似文献   

6.
组织工程三维多孔支架的制备方法和技术进展   总被引:32,自引:1,他引:32  
组织工程的关键技术之一在于将具有良好生物相容性和生物降解吸收性能的生物材料制备成具有特定形状和相连孔结构的三维多孔细胞支架(细胞外基质替代物)。本文着眼于多孔支架制备方法分别与多孔支架孔结构和外形的内在联系,从致孔和外形成型两个层次对组织工程多孔支架的制备方法和技术新近的研究进展进行了综述。  相似文献   

7.
综述了国内外应用生物多糖进行医用高分子材料表面修饰的研究状况,其中重点介绍了葡聚糖、肝素及类肝素类物质、壳聚糖等多糖在高分子材料表面修饰的研究近况.多糖是自然界中含量最为丰富的生物大分子,几乎存在于所有的生命体中,具有很好的生物相容性,而且某些生物多糖还具有特殊的生物活性,因此用生物多糖进行医用高分子材料的表面修饰受到了国内外研究学者的关注.大量研究表明,经过生物多糖表面修饰的高分子材料可获得良好的生物相容性和某些优良的医学应用性能.  相似文献   

8.
皮肤组织工程支架材料的研究进展   总被引:1,自引:0,他引:1  
皮肤组织工程支架为种子细胞提供粘附、生长、增殖和代谢的环境,并起支撑和模板作用,引导组织再生和控制组织结构,是人工皮肤的重要组成部分。探索理想的支架材料是当前皮肤组织工程领域的热点,本文综述了近年来皮肤组织工程支架材料的国内外研究进展,包括天然支架材料、合成支架材料和复合支架材料三大类,全面探讨了皮肤组织工程支架材料的制备方法及应用情况,本文还分析了皮肤组织工程支架材料存在的一些问题,并对其未来的发展进行了展望。  相似文献   

9.
聚羟基丁酸酯在组织工程中的应用   总被引:23,自引:2,他引:21  
介绍了生物可降解聚羟基丁酸酯(PHB)在软骨,骨,皮肤,心脏瓣膜,血管,神经等组织工程方面的应用研究进展。  相似文献   

10.
利用微创手术结合组织工程学的原理修复骨缺损具有操作简单、损伤小、费用低等优点,性能优良的可注射骨修复材料是这一治疗方法能否临床应用的关键。能够原位交联固化的可降解高分子是目前最有发展潜力的可注射骨修复材料。目前研究的可交联高分子包括:聚乳酸、聚酸酐、聚富马酸(1,2-丙二醇)酯以及聚磷酸酯等。本文介绍了这几类高分子的合成、交联固化方法以及固化后材料的力学性能、降解性能和生物相容性,并对这几类材料用于微创手术修复骨缺损存在的问题进行了分析,初步提出了相应的对策。  相似文献   

11.
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.

  相似文献   


12.
Polymeric scaffolds are three-dimensional, porous structures that may be used as a vehicle to deliver cells or therapeutic factors to repair tissue defects. Both biodegradable and non-biodegradable polymers have been developed for this purpose. In this review, we survey the polymers that have been investigated for cartilage tissue engineering and discuss the critical parameters for successful applications in the future.  相似文献   

13.
Three dimensional (3D) scaffolds have huge limitations due to their low porosity, mechanical strength, and lack of direct cell-bioactive drug contact. Whereas bisphosphonate drug has the ability to stimulate osteogenesis in osteoblasts and bone marrow mesenchymal stem cells (hMSC) which attracted its therapeutic use. However it is hard administration low bioavailability, and lack of site-specificity, limiting its usage. The proposed scaffold architecture allows cells to access the bioactive surface at their apex by interacting at the scaffold's interfacial layer. The interface of 3D polycaprolactone (PCL) scaffolds has been coated with alendronate-modified hydroxyapatite (MALD) enclosed in a chitosan matrix, to mimic the native environment and stupulate the through interaction of cells to bioactive layer. Where the mechanical strength will be provided by the skeleton of PCL. In the MALD composite's hydroxyapatite (HAP) component will govern alendronate (ALD) release behavior, and HAP presence will drive the increase in local calcium ion concentration increases hMSC proliferation and differentiation. In results, MALD show release of 86.28 ± 0.22. XPS and SEM investigation of the scaffold structure, shows inspiring particle deposition with chitosan over the interface. All scaffolds enhanced cell adhesion, proliferation, and osteocyte differentiation for over a week without in vitro cell toxicity with 3.03 ± 0.2 kPa mechanical strength.  相似文献   

14.
The lack of a vascular network and poor perfusion is what mostly prevents three‐dimensional (3D) scaffolds from being used in organ repair when reconstruction of thick tissues is needed. Highly‐porous scaffolds made of poly(L ‐lactic acid) (PLLA) are prepared by directional thermally induced phase separation (dTIPS) starting from 1,4‐dioxane/PLLA solutions. The influence of polymer concentration and temperature gradient, in terms of imposed intensity and direction, on pore size and distribution is studied by comparison with scaffolds prepared by isotropic TIPS. The processing parameters are optimized to achieve an overall porosity for the 3D scaffolds of about 93% with a degree of interconnectivity of 91%. The resulting pore network is characterized by the ordered repetition of closely packed dendrite‐like cavities, each one showing stacks of 20 µm large side lamellar branches departing from 70 µm diameter vertical backbones, strongly resembling the vascular patterns. The in vitro biological responses after 1 and 2 weeks are evaluated from mesenchymal (bone marrow stromal) cells (MSC) static culturing. A novel vacuum‐based deep‐seeding method is set up to improve uniform cell penetration down to scaffold thicknesses of over 1 mm. Biological screenings show significant 3D scaffold colonization even after 18 h, while cellular retention is observed up to 14 d in vitro (DIV). Pore architecture‐driven cellular growth is accompanied by cell tendency to preserve their multi‐potency towards differentiation. Confluent tissues as thick as 1 mm were reconstructed taking advantage of the large perfusion enhanced by the highly porous microstructure of the engineered scaffolds, which could successfully serve for applications aimed at vascular nets and angiogenesis.

  相似文献   


15.
Summary: Paper describes basic characteristics of synthesis and properties of aliphatic polyesters used for tissue engineering. Described is also synthesis of polyester containing block copolymers suitable for surface modification. Described are methods used for scaffold fabrication with required porosity. In particular, presented are methods according to which scaffolds are made from prefabricated polyester micro- and nanoparticles.  相似文献   

16.
Plant derived flavonoids have not been well explored in tissue engineering applications due to difficulties in efficient formulations with biomaterials for controlled presentation. Here, the authors report that surface coating of epigallocatechin gallate (EGCG) on polymeric substrates including poly (L‐lactic acid) (PLLA) nanofibers can be performed via oxidative polymerization of EGCG in the presence of cations, enabling regulation of biological functions of multiple cell types implicated in bone regeneration. EGCG coating on the PLLA nanofiber promotes osteogenic differentiation of adipose‐derived stem cells (ADSCs) and is potent to suppress adipogenesis of ADSCs while significantly reduces osteoclastic maturation of murine macrophages. Moreover, EGCG coating serves as a protective layer for ADSCs against oxidative stress caused by hydrogen peroxide. Finally, the in vivo implantation of EGCG‐coated nanofibers into a mouse calvarial defect model significantly promotes the bone regeneration (61.52 ± 28.10%) as compared to defect (17.48 ± 11.07%). Collectively, the results suggest that EGCG coating is a simple bioinspired surface modification of polymeric biomaterials and importantly can thus serve as a promising interface for tuning activities of multiple cell types associated with bone fracture healing.  相似文献   

17.
The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  相似文献   


18.
19.
通过模仿天然骨的成分、结构特性对材料进行设计与调控,获得新型仿生人工骨修复材料,这已成为骨修复材料发展的主要趋势之一。静电纺纳米纤维具有可调控的纳米结构、高孔隙率和大比表面积,可以模拟天然细胞外基质的结构和生物功能,被广泛应用于骨组织工程。本文提供一个基于骨组织工程的静电纺纳米纤维的全面概述。首先简要介绍了骨组织工程,并讨论了静电纺原理、参数和典型设备。随后,讨论了静电纺纳米纤维的表面改性方法,并通过关注最具代表性的实例重点介绍了与静电纺纳米纤维和静电纺纳米纤维增强复合材料的应用最相关的最新进展。此外,本综述展望了静电纺纳米纤维未来发展的挑战、机遇以及新方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号