首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis, the effects of fatiguing noise on hearing thresholds at frequencies of 32, 45, 64, and 128 kHz were investigated. The noise parameters were: 0.5-oct bandwidth, -1 to +0.5 oct relative to the test frequency, 150 dB re 1 μPa (140-160 dB re 1 μPa in one measurement series), with 1-30 min exposure time. Thresholds were evaluated using the evoked-potential technique allowing the tracing of threshold variations with a temporal resolution better than 1 min. The most effective fatiguing noise was centered at 0.5 octave below the test frequency. The temporary threshold shift (TTS) depended on the frequencies of the fatiguing noise and test signal: The lower the frequencies, the bigger the noise effect. The time-to-level trade of the noise effect was incomplete: the change of noise level by 20 dB resulted in a change of TTS level by nearly 20 dB, whereas the tenfold change of noise duration resulted in a TTS increase by 3.8-5.8 dB.  相似文献   

2.
Gap detection in chinchillas with temporary high-frequency hearing loss   总被引:4,自引:0,他引:4  
Estimates of auditory temporal acuity were obtained from normal chinchillas by measuring their gap-detection thresholds using wideband noise over a range of intensities. Afterwards, the animals were exposed to high-intensity noise whose low-frequency cutoff was progressively lowered towards the low frequencies in five 1-oct steps. The five exposures resulted in a temporary high-frequency hearing loss that progressively spread towards the low frequencies. In addition, there was a systematic and orderly increase in the gap-detection thresholds. These results indicate that gap resolution is strongly dependent on the audibility of the high-frequency energy in the test signal.  相似文献   

3.
The perception of pitch for pure tones with frequencies falling inside low- or high-frequency dead regions (DRs) was examined. Subjects adjusted a variable-frequency tone to match the pitch of a fixed tone. Matches within one ear were often erratic for tones falling in a DR, indicating unclear pitch percepts. Matches across ears of subjects with asymmetric hearing loss, and octave matches within ears, indicated that tones falling within a DR were perceived with an unclear pitch and/or a pitch different from "normal" whenever the tones fell more than 0.5 octave within a low- or high-frequency DR. One unilaterally impaired subject, with only a small surviving region between 3 and 4 kHz, matched a fixed 0.5-kHz tone in his impaired ear with, on average, a 3.75-kHz tone in his better ear. When asked to match the 0.5-kHz tone with an amplitude-modulated tone, he adjusted the carrier and modulation frequencies to about 3.8 and 0.5 kHz, respectively, suggesting that some temporal information was still available. Overall, the results indicate that the pitch of low-frequency tones is not conveyed solely by a temporal code. Possibly, there needs to be a correspondence between place and temporal information for a normal pitch to be perceived.  相似文献   

4.
Lateralization of narrow bands of noise was investigated while varying interaural temporal disparity (ITD), center frequency, and bandwidth, utilizing an acoustic pointing task. Stimuli were narrow bands of noise centered at octave intervals between 500 Hz and 4 kHz with bandwidths ranging from 50-400 Hz. In a second experiment, lateralization for bands of noise and sinusoidally amplitude-modulated (SAM) tones, whose spectral content was constrained to be no lower than 3.8 kHz, was assessed. Overall, relatively large extents of laterality were obtained from all four listeners for ITDs of low-frequency bands of noise. Increasing the bandwidth of these noises did not yield consistent changes in the extent of laterality across ITDs and listeners. Most targets centered at high frequencies were lateralized near the midline. However, three of the four listeners did exhibit rather large displacements of the intracranial image when the bandwidth of the high-frequency noises was 400 Hz or greater. Interestingly, ITDs within high-frequency SAM tones were relatively ineffective. Thus, it appears that ITDs of relatively wide-band, high-frequency stimuli can mediate rather substantial extents of laterality. However, these effects are highly listener-dependent.  相似文献   

5.
6.
Temporal gap resolution was measured in five normal-hearing listeners and five cochlear-impaired listeners, whose sensitivity losses were restricted to the frequency regions above 1000 Hz. The stimuli included a broadband noise and three octave band noises centered at 0.5, 1.0, and 4.0 kHz. Results for the normal-hearing subjects agree with previous findings and reveal that gap resolution improves progressively with an increase in signal frequency. Gap resolution in the impaired listeners was significantly poorer than normal for all signals including those that stimulated frequency regions with normal pure-tone sensitivity. Smallest gap thresholds for the impaired listeners were observed with the broadband signal at high levels. This result agrees with data from other experiments and confirms the importance of high-frequency signal audibility in gap detection. The octave band data reveal that resolution deficits can be quite large within restricted frequency regions, even those with minimal sensitivity loss.  相似文献   

7.
Using an audiometer,the effect of the noise level upon temporarythreshold shift(TTS)for five trained normal subjects(left ear only)was studied.The measurements were carried out after 6 min exposure(in third octave band)for different sound pressure levels ranging between 75-105 dB at three test fre-quencies 2,3,and 4 kHz.The results indicated that at exposure to noise of soundpressure level(SPL)above 85 dB,TTS increases linearly with ths SPL for all thetest frequencies.The work had extended to study the recovery curves for the sameears.The results indicated that the reduction in TTS on doubling the recoverytimes,for the two sound pressure levels 95 dB and 105 dB,occurs at a rate of near-ly 3 dB.The comparison of the recovery curve at 3 kHz with that calculated usingWard's general equation for recovery was made.Finally,to study the values ofTTS produced by exposure to certain noise at different test frequencies,distribu-tion curves for two recovery times were plotted representing TTS values,for anexposure  相似文献   

8.
Sound conditioning (pre-exposure to a moderate-level acoustic stimulus) can induce resistance to hearing loss from a subsequent traumatic exposure. Most sound conditioning experiments have utilized long-duration tones and noise at levels below 110 dB SPL as traumatic stimuli. It is important to know if sound conditioning can also provide protection from brief, high-level stimuli such as impulses produced by gunfire, and whether there are differences between females and males in the response of the ear to noise. In the present study, chinchillas were exposed to 95 dB SPL octave band noise centered at 0.5 kHz for 6 h/day for 5 days. After 5 days of recovery, they were exposed to simulated M16 rifle fire at a level of 150 dB peak SPL. Animals that were sound conditioned showed less hearing loss and smaller hair cell lesions than controls. Females showed significantly less hearing loss than males at low frequencies, but more hearing loss at 16 kHz. Cochleograms showed slightly less hair cell loss in females than in males. The results show that significant protection from impulse noise can be achieved with a 5-day conditioning regimen, and that there are consistent differences between female and male chinchillas in the response of the cochlea to impulse noise.  相似文献   

9.
The purpose of these experiments was to determine whether detecting brief decrements in noise level ("gaps") varies with the spectral content and bandwidth of noise in mice as it does in humans. The behavioral effect of gaps was quantified by their inhibiting a subsequent acoustic startle reflex. Gap durations from 1 to 29 ms were presented in five adjacent 1-octave noise bands and one 5-octave band, their range being 2 kHz to 64 kHz. Gaps ended 60 ms before the startle stimulus (experiment 1) or at startle onset (experiment 2). Asymptotic inhibition was greater for higher-frequency 1-octave bands and highest for the 5-octave band in both experiments, but time constants were related to frequency only in experiment 1. For the lowest band (2-4 kHz) neither noise decrements (experiment 1 and 2) nor increments (experiment 3) had any behavioral consequence, but this band was effective when presented as a pulse in quiet (experiment 4). The lowest frequencies in the most effective 1-octave band were one octave above the spectral region where mice have their best absolute thresholds. These effects are similar to those obtained in humans, and reveal a special contribution of wide band, high-frequency stimulation to temporal acuity.  相似文献   

10.
Behaviorally determined hearing thresholds for a 7.5-kHz tone for an Atlantic bottlenosed dolphin (Tursiops truncatus) were obtained following exposure to fatiguing low-frequency octave band noise. The fatiguing stimulus ranged from 4 to 11 kHz and was gradually increased in intensity to 179 dB re 1 microPa and in duration to 55 min. Exposures occurred no more frequently than once per week. Measured temporary threshold shifts averaged 11 dB. Threshold determination took at least 20 min. Recovery was examined 360, 180, 90, and 45 min following exposure and was essentially complete within 45 min.  相似文献   

11.
Sixty guinea pigs were exposed to a steady-state broadband noise with a falling frequency spectrum. The sound-pressure level was varied between 96 and 117 dB SPL, and the duration of the exposure was varied from 3 to 12 h. After 4-5 weeks, the auditory thresholds were determined by electrocochleography at 14 frequencies, and the results were compared with a control group. With increasing sound-pressure level, the thresholds became elevated at all frequencies. The maximum threshold elevation also exhibited a slight shift toward higher frequencies. With increasing exposure time, the threshold elevations increased and shifted into the high-frequency region, whereas the low-frequency region was less affected. Linear regression analysis showed that the average threshold elevation between 1 and 20 kHz did not deviate from that predicted by the equal-energy hypothesis. However, the high-frequency loss at 5-20 kHz was very dependent on the exposure time, whereas the 1- to 4-kHz loss was not. There was no sign of any critical intensity with sudden increments in threshold elevation.  相似文献   

12.
Changes in hearing sensitivity and cochlear damage were determined in two groups of chinchillas exposed to an octave band of noise (OBN) centered at 0.5 kHz, 95 dB SPL on two different schedules: 6 h per day for 36 days, or 15 min/h for 144 days. Hearing sensitivity was measured behaviorally at 1/4-oct frequency intervals from 0.125 to 16.0 kHz before, during, and for a period of 1 to 2 months after the exposure, at which time the animals' cochleas were fixed and prepared for microscopic examination. Cochlear damage was determined by counts of missing sensory cells. Both exposures produced an initial shift of thresholds of 35-45 dB; however, after a few days of exposure, thresholds began to decline and eventually recovered to within 10-15 dB of original baseline values even though the exposure continued. Measures of recovery made after completion of the exposures indicated minimal permanent threshold shifts in all animals. The behavioral and anatomical data indicated that these intermittent exposures produced less temporary and permanent hearing loss and less cochlear damage than continuous exposures of equal energy.  相似文献   

13.
A behavioral response paradigm was used to measure hearing thresholds in bottlenose dolphins before and after exposure to 3 kHz tones with sound exposure levels (SELs) from 100 to 203 dB re 1 microPa2 s. Experiments were conducted in a relatively quiet pool with ambient noise levels below 55 dB re 1 microPa2/Hz at frequencies above 1 kHz. Experiments 1 and 2 featured 1-s exposures with hearing tested at 4.5 and 3 kHz, respectively. Experiment 3 featured 2-, 4-, and 8-s exposures with hearing tested at 4.5 kHz. For experiment 2, there were no significant differences between control and exposure sessions. For experiments 1 and 3, exposures with SEL=197 dB re 1 microPa2 s and SEL > or = 195 dB re 1 microPa2 s, respectively, resulted in significantly higher TTS4 than control sessions. For experiment 3 at SEL= 195 dB re 1 microPa2 s, the mean TTS4 was 2.8 dB. These data are consistent with prior studies of TTS in dolphins exposed to pure tones and octave band noise and suggest that a SEL of 195 dB re 1 microPa2 s is a reasonable threshold for the onset of TTS in dolphins and white whales exposed to midfrequency tones.  相似文献   

14.
The underwater hearing sensitivity of a striped dolphin was measured in a pool using standard psycho-acoustic techniques. The go/no-go response paradigm and up-down staircase psychometric method were used. Auditory sensitivity was measured by using 12 narrow-band frequency-modulated signals having center frequencies between 0.5 and 160 kHz. The 50% detection threshold was determined for each frequency. The resulting audiogram for this animal was U-shaped, with hearing capabilities from 0.5 to 160 kHz (8 1/3 oct). Maximum sensitivity (42 dB re 1 microPa) occurred at 64 kHz. The range of most sensitive hearing (defined as the frequency range with sensitivities within 10 dB of maximum sensitivity) was from 29 to 123 kHz (approximately 2 oct). The animal's hearing became less sensitive below 32 kHz and above 120 kHz. Sensitivity decreased by about 8 dB per octave below 1 kHz and fell sharply at a rate of about 390 dB per octave above 140 kHz.  相似文献   

15.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

16.
Behavioral studies of hearing loss produced by exposure to ototraumatic agents in experimental animals, combined with the anatomical evaluation of end-organ pathology, have provided useful information about the relation between dysfunction and pathology. However, in order to attribute a given hearing loss to some pattern of cochlear damage, it is necessary to test each ear independently. The objective of the present study was to evaluate attenuation measured behaviorally and protection to the cochlea provided by removal of the malleus and incus in noise-exposed chinchillas. Results from one behaviorally trained chinchilla with ossicular removal indicated a conductive hearing loss that varied from 41 dB at 0.125 kHz to 81 dB at 4.8 kHz and averaged 60 dB. Counts of missing sensory cells in ears of seven chinchillas with unilateral ossicular removal and exposure to noise (octave band centered at 0.5 kHz, 95 dB SPL, for durations up to 216 days, or centered at 4.0 kHz, 108 dB SPL, for 1.75 h) showed no more cell loss on the protected side than in age-matched control ears. From these data it is concluded that ossicular removal provides enough attenuation to protect the chinchilla cochlea from damage during these noise exposures, and that it will insure monaural responses behaviorally as long as the hearing loss in the test ear does not exceed that in the ear with ossicular removal by approximately 50 dB at any frequency.  相似文献   

17.
Word identification in noise was measured adaptively under flat and rising frequency response conditions to represent basic alternatives for a hearing-aid characteristic. The speech test results were compared with measures of sensitivity, loudness tolerance, frequency resolution, and temporal resolution in 23 hearing-aid users with mild or moderate sensorineural hearing losses. Subjects also rated the two frequency responses for preference and subjective quality. A paradoxical relationship was found whereby superior speech performance under the flat condition was associated with preference for the rising condition, and vice versa. No combinations of psychoacoustic variables satisfactorily explained either relative performance or preference, although high-frequency sensitivity and upward spread of masking were implicated. Absolute speech performance was related to sensitivity at 2 kHz, age, and sex, but not to frequency resolution once other factors were partialed. Temporal resolution was also a factor, but this was due largely to the influence of extreme values in two subjects. It is concluded that, for moderate degrees of hearing loss, speech identification in noise can be predicted from age, sex, and sensitivity with little advantage from recourse to measurement of frequency or temporal resolution.  相似文献   

18.
Masking period patterns (MPPs) were measured in listeners with normal and impaired hearing using amplitude-modulated tonal maskers and short tonal probes. The frequency of the masker was either the same as the frequency of the probe (on-frequency masking) or was one octave below the frequency of the probe (off-frequency masking). In experiment 1, MPPs were measured for listeners with normal hearing using different masker levels. Carrier frequencies of 3 and 6 kHz were used for the masker. The probe had a frequency of 6 kHz. For all masker levels, the off-frequency MPPs exhibited deeper and longer valleys compared with the on-frequency MPPs. Hearing-impaired listeners were tested in experiment 2. For some hearing-impaired subjects, masker frequencies of 1.5 kHz and 3 kHz were paired with a probe frequency of 3 kHz. MPPs measured for listeners with hearing loss had similar shapes for on- and off-frequency maskers. It was hypothesized that the shapes of MPPs reflect nonlinear processing at the level of the basilar membrane in normal hearing and more linear processing in impaired hearing. A model assuming different cochlear gains for normal versus impaired hearing and similar parameters of the temporal integrator for both groups of listeners successfully predicted the MPPs.  相似文献   

19.
Auditory steady-state evoked potentials were measured in a bottlenose dolphin (Tursiops truncatus) in response to single and multiple sinusoidal amplitude modulated (SAM) tones. Tests were conducted in air using a "jawphone" sound projector. Evoked potentials were recorded noninvasively using surface electrodes embedded in suction cups. Sound stimuli consisted of SAM tones with 1, 2, 3, or 4 carrier frequencies (10, 20, 30, 40 kHz), each with a unique modulation frequency. Stimulus sound pressure levels were varied in 5-dB steps from approximately 120 to 60-75 dB re 1 microPa, depending on frequency. Evoked potentials followed the temporal envelope of each stimulus, resulting in spectral components at each unique modulation frequency. Spectral analysis was used to evaluate the response amplitude for each carrier as a function of stimulus level. There were no significant differences between thresholds obtained with single and multiple stimuli at 10, 30, and 40 kHz. At 20 kHz, thresholds obtained with three components were higher than those obtained with four components, possibly revealing interactions between stimuli with less than one octave frequency separation. The use of multiple SAM stimuli may offer substantial advantages for studies of marine mammal hearing, where testing time and access to subjects are typically limited.  相似文献   

20.
Exposure to high level of noise, may cause the permanent cochlear synaptic degeneration. In present study, a model of noise induced cochlear synaptopathy was established and the electrophysiological and histological metrics for its assessment was designed. 6 guinea pigs were subjected to a synaptopathic noise (octave band of 4 kHz at 104 dB SPL, for 2-h). The amplitude growth curve of Auditory Brainstem Response (ABR) wave-I and wave-III latency shift in presence of noise were calculated. These indexes were considered in pre-exposure, 1 day post exposure (1DPE), 1 week post exposure (1WPE) and 1 month post exposure (1MPE) to noise. Finally, the samples were histologically analyzed. ABR wave-I amplitude was different between pre and 1DPE (p-value ≤ 0.05). However, at 1WPE, it was recovered at low intensities but at 70 dB SPL and above, the differences persisted even till 1MPE. In masked ABR, the latency shift of wave-III was different between pre and 3 post exposure assessments (p-value ≤ 0.05). Electro-microscopic analysis confirmed the synaptic degeneration, as the ribbons were larger than normal, hollow inside, and spherical and irregular in shape, also, the post synaptic density was abnormally thick and missed its flat orientation. These data revealed that noise at level below that can produce permanent hearing loss, can incur synaptic injury. So, noise is considered to be more damaging than previously thought. Accordingly, designing tools for clinical assessment of synaptopathy is beneficial in comprehensive auditory evaluation of those with history of noise exposure and also in hearing protection planning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号