首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
研究了含非完整界面圆形涂层夹杂内部一个螺型位错在夹杂、涂层与无限大基体材料中产生的弹性场.运用复变函数函数方法,获得了三个区域复势函数的解析解答.利用求得的应力场和Peach-Koehler公式,得到了作用在螺型位错上位错力的精确表达式.主要讨论了两个非完整界面对位错力的影响规律.结果表明,涂层界面对夹杂内部螺型位错的吸引力随着界面粘结强度的弱化而变大.界面非完整程度增加削弱材料弹性失配对位错力的影响.在一定条件下,非完整界面可以改变夹杂内位错与涂层/基体系统之间的引斥干涉规律,并使位错在夹杂内部产生一个稳定或非稳定的平衡点.  相似文献   

2.
运用弹性力学的复势方法,研究了纵向剪切下增强相/夹杂内螺型位错偶极了与含共焦钝裂纹椭圆夹杂的干涉效应,得到了该问题复势函数的封闭形式解答,由此推导出了夹杂区域的应力场、作用在螺型位错偶极子中心的像力和像力偶矩以及裂纹尖端应力强度因子的级数形式解.并分析了位错偶极子倾角ψ、钝裂纹尺寸和材料常数对位错像力、像力偶矩以及应力强度因子的影响.数值计算结果表明:位错像力、像力偶矩以及应力强度因子均随位错偶极子倾角做周期变化;夹杂内部的椭圆钝裂纹明显增强了硬基体对位错的排斥,减弱了软基体对位错的吸引,且对于硬夹杂,位错出现了一个不稳定平衡位置,该平衡位置随钝裂纹曲率的增大不断向界面靠近;变化ψ值将出现改变位错偶极子对应力强度因子作用方向的临界值.  相似文献   

3.
含界面效应纳米尺度圆环形涂层中螺型位错分析   总被引:1,自引:1,他引:0  
研究了纳米尺度圆环形涂层(界面层)中螺型位错与圆形夹杂以及无限大基体材料的干涉效应.涂层与夹杂的界面和涂层与基体的界面均考虑界面应力效应.运用复势方法,获得了三个区域复势函数的解析解答.利用求得的应力场和Peach-Koehler公式,得到了作用在螺型位错上位错力的精确表达式.主要讨论了界面应力对涂层(界面层)中螺型位错运动和平衡稳定的影响规律.结果表明,界面应力对界面附近位错的运动有大的影响,由于界面应力的存在,可以改变涂层内位错与夹杂/基体干涉的引斥规律,并使位错在涂层内部产生三个稳定或非稳定的平衡点.考虑界面效应后,有一个额外的排斥力或吸引力作用在位错上,使原有的位错力增加或减小.  相似文献   

4.
方棋洪  刘又文 《力学季刊》2004,25(2):279-285
位错和夹杂的干涉效应对于理解材料的强化和韧化机理具有十分重要的意义。文中研究了晶体材料中刃型位错和多条共圆弧刚性线夹杂的干涉作用。利用Riemann—Schwarz反照原理和复势函数的奇性主部分析技术,得到了问题的一般解答;对于只含一条刚性线夹杂的情况,给出了复势函数的封闭形式解。由Peach-Koehler公式求出了作用在刃型位错上的位错力,并讨论了圆弧形刚性线夹杂对位错力的影响规律,发现弧形刚性线对刃型位错有很强的排斥作用。本文解答不但可作为格林函数获得任意分布位错的相应解答,而且可以用于研究刚性线夹杂和任意形状裂纹的干涉效应问题。  相似文献   

5.
研究了无穷远纵向剪切下无限大基体中含共焦刚性核弹性椭圆夹杂内任意位置螺型位错的干涉问题.运用复变函数保角映射、解析延拓等方法,获得了基体与夹杂区域的应力场的级数形式精确解,并得出了位错像力的解析表达式,导出了纵向剪切下两椭圆界面最大应力及其比值公式.在此基础上,分析和讨论了夹杂内部刚性核对位错与夹杂之间干涉的扰动效应,以及椭圆夹杂尺度对位错像力的影响规律.  相似文献   

6.
研究了穿透圆形夹杂界面的半无限楔形裂纹与裂纹尖端螺型位错的干涉问题.应用复变函数解析延拓技术与奇性主部分析方法,得到了位错位于半圆形夹杂内部时,半无限基体和半圆形夹杂内复势函数的解析解.然后利用保角映射技术得到了穿透圆形夹杂界面的半无限楔形裂纹尖端螺型位错产生的应力场以及作用在位错上的位错力的解析表达式.主要讨论了螺型位错对裂纹的屏蔽效应以及从楔形裂纹尖端发射位错的临界载荷条件.研究结果表明正的螺型位错可以削弱楔形裂纹尖端的应力强度因子,屏蔽裂纹的扩展,屏蔽效应随位错方位角的增大而减小.位错发射所需的无穷远临界应力随发射角的增加而增大,最可能的位错发射角度为零度,直线裂纹尖端位错的发射比楔形裂纹尖端位错的发射更容易,硬基体抑制位错的发射.  相似文献   

7.
研究了多晶体材料中螺型位错偶极子和界面裂纹的弹性干涉作用.利用复变函数方法,得到了该问题复势函数的封闭形式解答.求出了由位错偶极子诱导的应力场和裂纹尖端应力强度应子,分析了偶极子的方向,偶臂和位置以及材料失配对应力强度因子的影响.推导了作用在螺型位错偶极子中心的像力和力偶矩,并讨论了界面裂纹几何条件和不同材料特征组合对位错偶极子平衡位置的影响规律.结果表明,裂纹尖端的螺型位错偶极子对应力强度因子会产生强烈的屏蔽或反屏蔽效应.同时,界面裂纹对螺型位错偶极子在材料中运动有很强的扰动作用.  相似文献   

8.
研究了复合材料含界面层圆形夹杂内部的一个螺旋位错在夹杂、界面层与基体材料中产生的弹性干涉.将复变函数的分区亚纯函数理论与柯西型积分、罗朗级数相结合,求出了各分区复势的解析关系,化为一个关于界面层复势的函数方程,用显示式表达了问题的结果,揭示了界面层参数对位错干涉能与位错力的影响规律.该解析方法较经典级数方法未知量大量减少,表达式更加简洁.结果的特殊情形包含了若干已有成果.  相似文献   

9.
研究了压电双材料界面钝裂纹附近螺型位错的屏蔽效应与发射条件.应用保角变换技术,得到了复势函数与应力场的封闭形式解,讨论了位错方位、双材料电弹常数及裂纹钝化程度对位错屏蔽效应和发射条件的影响.结果表明,Burgers矢量为正的螺型位错可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随位错方位角及位错与裂纹尖端距离的增大而减弱,压电双材料中螺型位错对裂纹的屏蔽效应强于相应弹性双材料中螺型位错对裂纹的屏蔽效应;位错发射所需的临界无穷远加载或电位移随位错方位角及裂纹钝化程度的增加而增大;最可能的位错发射角度为零度即位错最可能沿裂纹前方发射.论文解答的特殊情况与已有文献一致.  相似文献   

10.
研究了纳米线环形晶体薄膜涂层中失配位错偶极子与纳米线的干涉效应,并考虑纳米尺度应力效应及纳米线晶格失配的影响.运用弹性复势方法,分别获得了涂层和纳米线区域复势函数的精确解析解.利用求得的应力场和Peach-Koehler公式,得到了作用在螺型位错偶极子上像力和失配应力的精确表达式.算例结果表明,涂层纳米线界面应力和失配应力对涂层中失配位错偶极子的作用影响很大,由于界面应力和失配应力的存在,可以改变涂层内位错偶极子与纳米线干涉的引斥规律.与宏观尺度下的线型材料相比,纳米线材料由于界面效应的影响,位错偶极子在涂层中平衡位置的数量增加,涂层中更容易产生失配位错偶极子.考虑纳米线晶格失配的影响后,位错偶极子在涂层中平衡位置的数量增加.由此可知,减小纳米线晶格失配的影响,可以控制失配位错偶极子的产生.  相似文献   

11.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

12.
The problem of the elastic interaction between a screw dislocation and a three-phase circular inclusion with interracial rigid lines (anti-cracks) is investigated. An efficient and concise method for the complex multiply connected region is developed, with which explicit series form solutions of the complex potentials in the matrix, and the interphase layer and inclusion regions are derived. Based on the complex potentials, the image force on the screw dislocation is then calculated by using the Peach-Koehler formula. The equilibrium position of the dislocation is discussed in detail for various rigid line geometries, interphase layer thicknesses and material property combinations. The main results show that the interracial rigid lines exert a significant perturbation effect on the motion of the screw dislocation near the circular inclusion surrounded by an interphase layer.  相似文献   

13.
The interaction of a generalized screw dislocation with circular arc interfacial cracks under remote antiplane shear stresses, in-plane electric and magnetic loads in transversely isotropic magnetoelectroelastic solids is dealt with. By using the complex variable method, the general solutions to the problem are presented. The closed-form expressions of complex potentials in both the inhomogeneity and the matrix are derived for a single circular-arc interfacial crack. The intensity factors of stress, electric displacement and magnetic induction are provided explicitly. The image forces acting on the dislocation are also calculated by using the generalized Peach–Koehler formula. For the case of piezoelectric matrix and piezomagnetic inclusion, the shielding and anti-shielding effect of the dislocation upon the stress intensity factors is evaluated in detail. The results indicate that if the distance between the dislocation and the crack tip remains constant, the dislocation in the interface will have a largest shielding effect which retards the crack propagation. In addition, the influence of the interfacial crack geometry and materials magnetoelectroelastic mismatch upon the image force is discussed. Numerical computations show that the perturbation effect of the above parameters upon the image force is significant. The main result shows that a stable or unstable equilibrium point may be found when a screw dislocation approaches the surface of the crack from infinity which differs from the perfect bonded case under the same conditions. The present solutions contain a number of previously known results which can be shown to be special cases.  相似文献   

14.
The elastic interaction between a screw dislocation and an elliptical inhomogeneity with interfacial cracks is studied. The screw dislocation may be located outside or inside the inhomogeneity. An efficient complex variable method for the complex multiply connected region is developed, and the general solutions to the problem are derived. As illustrative examples, solutions in explicit series form for complex potentials are presented in the case of one or two interfacial cracks. Image forces on the dislocation are calculated by using the Peach-Koehler formula. The influence of crack geometries and material properties on the image forces is evaluated and discussed. It is shown that the interfacial crack has a significant effect on the equilibrium position of the dislocation near an elliptical-arc interface. The main results indicate, when the length of the crack goes up to a critical value, the presence of the interfacial crack can change the interaction mechanism between a screw dislocation and an elliptical inclusion. The present solutions can include a number of previously known results as special cases.The project supported by the National Natural Science Foundation of China(10272009 and 10472030) and the Natural Science Foundation of Hunan Province(02JJY2014)  相似文献   

15.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

16.
The electro-elastic interaction between a piezoelectric screw dislocation located either outside or inside inhomogeneity and circular interfacial rigid lines under anti-plane mechanical and in-plane electrical loads in linear piezoelectric materials is dealt with in the framework of linear elastic theory. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of complex functions, the general solution of this problem is presented in this paper. For a special example, the closed form solutions for electro-elastic fields in matrix and inhomogeneity regions are derived explicitly when interface containing single rigid line. Applying perturbation technique, perturbation stress and electric displacement fields are obtained. The image force acting on piezoelectric screw dislocation is calculated by using the generalized Peach–Koehler formula. As a result, numerical analysis and discussion show that soft inhomogeneity can repel screw dislocation in piezoelectric material due to their intrinsic electro-mechanical coupling behavior and the influence of interfacial rigid line upon the image force is profound. When the radian of circular rigid line reaches extensive magnitude, the presence of interfacial rigid line can change the interaction mechanism.  相似文献   

17.
The interaction between a piezoelectric screw dislocation and an interphase layer in piezoelectric solids is theoretically investigated.Here,the dislocation located at arbitrary points inside either the matrix or the inclusion and the interfaces of the interphase layer are imperfect.By the complex variable method,the explicit solutions to the complex potentials are given,and the electroelastic fields can be derived from them.The image force acting on the dislocation can be obtained by the generalized PeachKoehler formula.The motion of the piezoelectric screw dislocation and its equilibrium positions are discussed for variable parameters.The important results show that,if the inner interface of the interphase layer is imperfect and the magnitude of degree of the interface imperfection reaches the certain value,two equilibrium positions of the piezoelectric screw dislocation in the matrix near the interface are found for the certain material combination which has never been observed in the previous studies(without considering the interface imperfection).  相似文献   

18.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation is very important.  相似文献   

19.
The elastic interaction of an edge dislocation, which is located either outside or inside a circular inhomogeneity, with an interfacial crack is dealt with. Using Riemann–Schwarz’s symmetry principle integrated with the analysis of singularity of the complex potentials, the closed form solutions for the elastic fields in the matrix and inhomogeneity regions are derived explicitly. The image force on the dislocation is then determined by using the Peach–Keohler formula. The influence of the crack geometry and material mismatch on the dislocation force is evaluated and discussed when the dislocation is located in the matrix. It is shown that the interfacial crack has significant effect on the equilibrium position of the edge dislocation near a circular interface. The results also reveal a strong dependency of the dislocation force on the mismatch of the shear moduli and Poisson’s ratios between the matrix and inhomogeneity.  相似文献   

20.
The interaction between piezoelectric screw dislocations and two asymmetrical interfacial cracks emanating from an elliptic hole under combined mechanical and electric load at infinity is dealt with. The closed-form solutions are derived for complex potentials and generalized stress fields. In the limiting cases, some well-known results can be obtained from the present solutions. Moreover, some new exact solutions are shown. The stress intensity factor and the energy release rate at the right tip due to a screw dislocation near the right interfacial crack are also calculated. The results show that the shielding effect of dislocation on crack expanding decreases with the increase in dislocation azimuth angle and the distance between the dislocation and the crack tip, and the repulsion acting on the dislocation from the other half plane demotes crack propagation. The increasing of the length of the other crack promotes crack growth, but the increasing of the minor semi-axis demotes it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号