首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Nana CG  Jian W  Xi C  Pinga DJ  Feng ZZ  Qing CH 《The Analyst》2000,125(12):2294-2298
It has been found that the electrochemical activity of glutathione was increased greatly at the glassy carbon electrodes modified with 5,10,15,20-tetraphenylporphine ruthenium(II) carbenyl (RuTPP), meso-tetraphenylporphine copper(II) complex (CuTTP) and hemin. It has been also found that glutathione would enhance the electrogenerated chemiluminescence (ECL) of Ru(bpy)3(2+) at a hemin glassy carbon electrode; the enhanced ECL intensity was linear with the concentration of glutathione in the range of 1 x 10(-7)-1 x 10(-4) mol l-1, based on which method for determination of glutathione has been developed. The detection limit of glutathione was 2 x 10(-8) mol l-1, and the relative standard deviation for 1 x 10(-6) mol l-1 glutathione was 2.7%. The mechanism for this ECL system has been proposed.  相似文献   

2.
The electrochemiluminescence (ECL) of Tb3+-enoxacin-Na2SO3 system (ENX system) and Tb3+-ofloxacin-Na2SO3 system (OFLX system) in aqueous solution is reported. ECL is generated by the oxidation of Na2SO3, which is enhanced by Tb3+-fluoroquinolone (FQ) complex. The ECL intensity peak versus potential corresponds to oxidation of Na2SO3, and the ECL emission spectra (the peaks are at 490, 545, 585 and 620 nm) match the characteristic emission spectrum of Tb3+, indicating that the emission is from the excited state of Tb3+. The mechanism of ECL is proposed and the difference of ECL intensity between ENX system and OFLX system is explained. Conditions for ECL emission were optimized. The linear range of ECL intensity versus concentrations of pharmaceuticals is 2.0 x 10(-10) -8.0 x 10(-7)mol l(-1) for ENX and 6.0 x 10(-10) -6.0 x 10(-7)mol l(-1) for OFLX, respectively. A theoretical limit of detection is 5.4 x 10(-11)mol l(-1) for ENX and 1.6 x 10(-10)mol l(-1) for OFLX, respectively. The ECL was satisfactorily applied to the determination of the two FQs in dosage form and urine sample.  相似文献   

3.
Terbium sensitized fluorescence was used to develop a sensitive and simple spectrofluorimetric method for the determination of the anthranilic acid derivatives furosemide and mefenamic and tolfenamic acids. The method makes use of radiative energy transfer from anthranilates to terbium ions in alkaline methanolic solutions. Optimum conditions for the formation of the anthranilate-Tb3+ complexes were investigated. Under optimized conditions, the detection limits are 6 x 10(-9), 1.4 x 10(-8) and 9.0 x 10(-9) mol l-1 for furosemide, mefenamic acids and tolfenamic acid, respectively. The range of application is 2.5 x 10(-8)-5.0 x 10(-5) mol l-1 for all three drugs. The method was successfully applied to the determination of furosemide and mefenamic and tolfenamic acids in serum after extraction of the samples with ethyl acetate, evaporation of the organic layer under a stream of nitrogen at 40 degrees C and reconstitution of the residue with alkaline methanolic terbium solution prior to instrumental measurement. The mean recoveries from serum samples spiked with furosemide (5.0 x 10(-7), 2.0 x 10(-6) and 8.0 x 10(-6) mol l-1), mefenamic acid (3.0 x 10(-6), 9.0 x 10(-6) and 3.0 x 10(-5) mol l-1) and tolfenamic acid (3.1 x 10(-6), 12.5 x 10(-6) and 2.5 x 10(-5) mol l-1) were 96 +/- 8, 101 +/- 5 and 98 +/- 7%, respectively. The within-run precision (RSD) for the method for two serum samples of each drug varied from 2 to 8% and the day-to-day precision for two concentration levels varied from 2 to 13%.  相似文献   

4.
基于磷酸可待因对联吡啶钌在该电极上的电化学及其发光行为的增敏作用,建立了一种直接测定磷酸可待因的电化学发光新方法。在最佳实验条件下,磷酸可待因在1.0×10-4~4.0×10-6mol/L和4.0×10-6~2.0×10-7mol/L与相对发光强度呈线性关系,检出限为1.0×10-7mol/L(S/N=3)。连续测定4.0×10-7mol/l磷酸可待因5次,发光强度的RSD为2.7%。方法用于模拟尿样中磷酸可待因的测定,结果满意。  相似文献   

5.
Liu YM  Cao JT  Tian W  Zheng YL 《Electrophoresis》2008,29(15):3207-3212
A novel method for the determination of norfloxacin (NOR) and levofloxacin (LVX) was developed by CE separation and electrochemiluminesence detection (ECL). The methods for capillary conditioning and the effect of solvent type were studied. Parameters affecting the CE and ECL were also investigated. Under the optimum conditions, the two analytes were well separated within 9 min. The LODs (S/N = 3) in standard solution are 4.8 x 10(-7) mol/L for NOR and 6.4 x 10(-7) mol/L for LVX, respectively. The precisions of intraday and interday are less than 4.2 and 8.1%, respectively. The LOQs (S/N = 10) in real human urine samples are 1.2 x 10(-6) mol/L for NOR and 1.4 x 10(-6) mol/L for LVX, respectively. The applicability of the proposed method was illustrated in the determination of NOR and LVX in human urine samples and the monitoring of pharmacokinetics for NOR. The recoveries of NOR and LVX at different levels in human urine samples were between 84.3 and 92.3%.  相似文献   

6.
Lei R  Xu X  Yu F  Li N  Liu HW  Li K 《Talanta》2008,75(4):1068-1074
Quercetin greatly enhanced luminol electrochemiluminescence of quercetin in alkaline solution. When the concentration of luminol was 0.1 mol L(-1), the detection limit for quercetin was 2.0x10(-8) mol L(-1) with a linear range from 1.0x10(-7) to 2x10(-5) mol L(-1). The pH and buffer substantially affected ECL intensity. Quercetin was autoxidized in alkaline aqueous solution. The rate of autoxidation of quercetin in various pH buffers and borate concentrations were measured. Borate was found to inhibit quercetin autoxidation and compromise quercetin enhancement effect on luminol ECL to some extent. Two final autoxidation products were identified with LC-MS methods. Autoxidation process was associated with enhancement of ECL intensity. The ROS generated during quercetin autoxidation enhanced the ECL intensity.  相似文献   

7.
A new and sensitive method for the determination of norepinephrine (NE), synephrine, and isoproterenol was developed by CE separation and indirect electrochemiluminescence detection (ECL) based on their quenching effects on the tris(2,2'-bipyridyl)-ruthenium(II)/tripropylamine (TPA) system. The conditions for CE separation and ECL detection were investigated in detail. Under the optimum conditions, the three analytes were well separated within 9 min. The LODs (S/N = 3) in standard solution are 2.6 x 10(-8) mol/L for NE, 6.6 x 10(-9) mol/L for synephrine and 8.4 x 10(-8) mol/L for isoproterenol, respectively. The precisions of intraday and interday are less than 4.4 and 6.1%, respectively. The LOQs (S/N = 10) in real human urine samples are 2.6 x 10(-7) mol/L for NE, 8.8 x 10(-8 ) mol/L for synephrine, and 8.8 x 10(-7) mol/L for isoproterenol, respectively. The applicability of the proposed method was illustrated in the determination of 20 human urine samples from diabetic patients and healthy persons. The results obtained indicated that the level of NE in patients (mean value 0.41 micromol/L) was higher than that in healthy persons (mean value 0.24 micromol/L).  相似文献   

8.
Takagai Y  Igarashi S 《The Analyst》2001,126(5):551-552
10(-9) mol l-1 levels of polycyclic aromatic hydrocarbons (PAHs) suspected for certain noxious materials can be determined and separated by UV-detection capillary electrophoresis following a two-step concentration system. When the conditions of the homogeneous liquid-liquid extraction were [THF]T = 5 vol%, [HCl]T = 0.66 mol l-1, and [PFOA]T = 2 x 10(-3) mol l-1 (i.e., the volume of sample solution; 50 ml-->sedimented phase; 30 microliters), the extraction percentages of benzo[a]pyrene (Bap) and pyrene (Py) at 10(-6) mol l-1 were 102 and 97.5%, respectively. Also, when the total concentration factor(volume ratio), which includes that of the sweeping method, was 8335-fold, the determination range of Bap was 6.4 x 10(-9)-8.0 x 10(-7) mol l-1 and for Py, 8.0 x 10(-9)-7.0 x 10(-7) mol l-1. The detection limits (3 sigma) of Bap and Py were 1.6 x 10(-9) and 4.8 x 10(-9) mol l-1, respectively.  相似文献   

9.
Xu Y  Gao Y  Wei H  Du Y  Wang E 《Journal of chromatography. A》2006,1115(1-2):260-266
Capillary electrophoresis (CE) with Ru(bpy)3(2+) electrochemiluminescence (ECL) detection system was established to the determination of contamination of banknotes with controlled drugs and a high efficiency on-column field-amplified sample stacking (FASS) technique was also optimized to increase the ECL intensity. The method was illustrated using heroin and cocaine, which are two typical and popular illicit drugs. Highest sample stacking was obtained when 0.01 mM acetic acid was chosen for sample dissolution with electrokinetical injection for 6 s at 17 kV. Under the optimized conditions: ECL detection at 1.2 V, separation voltage 10.0 kV, 20 mM phosphate-acetate (pH 7.2) as running buffer, 5 mM Ru(bpy)3(2+) with 50 mM phosphate-acetate (pH 7.2) in the detection cell, the standard curves were linear in the range of 7.50x10(-8) to 1.00x10(-5) M for heroin and 2.50x10(-7) to 1.00x10(-4) M for cocaine and detection limits of 50 nM for heroin and 60 nM for cocaine were achieved (S/N = 3), respectively. Relative standard derivations of the ECL intensity and the migration time were 3.50 and 0.51% for heroin and 4.44 and 0.12% for cocaine, respectively. The developed method was successfully applied to the determination of heroin and cocaine on illicit drug contaminated banknotes without any damage of the paper currency. A baseline resolution for heroin and cocaine was achieved within 6 min.  相似文献   

10.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

11.
Ding SN  Xu JJ  Chen HY 《Electrophoresis》2005,26(9):1737-1744
The major goal of this work was to develop a new solid-state electrochemiluminescence (ECL) detector suitable for capillary electrophoresis (CE). The detector was fabricated by coating a sol-gel derived zirconia (ZrO(2))-Nafion composite film on a graphite electrode, then the zirconia-Nafion modified electrode was immersed in tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)(3) (2+)) solution to immobilize this active chemiluminescence reagent. The voltammetric and ECL behaviors of the detector were investigated and optimized in tripropylamine solution. The ratio of 53% for zirconia in the zirconia-Nafion composite provided the highest luminescence intensity of immobilized Ru(bpy)(3) (2+). The ECL can maintain its stability very well in the phosphate solution in the period of 5-90 h when the solid-state ECL detector was immersed in the solution all the time. The optimum distance of capillary outlet to the solid-state ECL detector has been found to be ca. 50-80 microm for a 75 microm capillary. The effects of ionic strength and pH of ECL solution on peak height were investigated. The CE with solid-state ECL detector system was successfully used to detect tripropylamine, lidocaine, and proline. The detection limits (S/N = 3) were 5 x 10(-9) mol.L(-1) for tripropylamine, 1 x 10(-8) mol.L(-1) for lidocaine and 5 x 10(-6) mol.L(-1) for proline, and the linear ranges were from 1.0 x 10(-8) to 1.0 x 10(-5) mol.L(-1) for tripropylamine, 5.0 x 10(-7) mol.L(-1) to 1.0 x 10(-5) mol.L(-1) for lidocaine and 1.0 x 10(-5) to 1.0 x 10(-3) mol.L(-1) for proline, respectively.  相似文献   

12.
Zhike H  Hua G  Liangjie Y  Shaofang L  Hui M  Xiaoyan L  Yun'e Z 《Talanta》1998,47(2):301-304
A chemiluminescence method for the determination of citric acid was developed. The method is based on the enhancement of citric acid on the chemiluminescence light emission of tris-(2,2'-bipyridine)ruthenium(II). In the presence of tris-(2,2'-bipyridine)ruthenium(II), upon the addition of Ce(IV), resulted in intense light emission. The emission intensity is greatly enhanced by the presence of citric acid. The linear range and detection limit of citric acid are 3.0x10(-8) approximately 6.0x10(-6) mol l(-1) and 3.0x10(-8) mol l(-1), respectively. The precision of the proposed method is determined by analyzing 11 samples containing 1.0x10(-7) mol l(-1) citric acid. The relative standard deviation is 3.0%. The enhanced mechanism of citric acid was studied. The method was evaluated by carrying out an interference study with common ions and compounds, by a recovery study and by analysis of human urine and orange juice. A satisfactory result was obtained.  相似文献   

13.
A new flow injection chemiluminescence (CL) system was used for the determination of noscapine. This technique is based on the reduction effect of noscapine on the Ru(phen)3(3+), which is produced by reaction between Ru(phen)3(2+) and acidic Ce(IV) solutions, and this rapid reduction produces strong CL. Calibration plots were linear over the range of 3.0 x 10(-7) - 2.0 x 10(-6) mol L(-1) and 2.0 x 10(-6) - 2.0 x 10(-4) mol L(-1). The CL intensity was so high, that it is able to produce a detection limit of 6.6 x 10(-8) M noscapine (3sigma). The relative standard deviation of 2.0 x 10(-6) M noscapine was 1.0% (n=10). The proposed method was successfully applied for the flow injection determination of noscapine in cough and Tonin syrup samples. The results of real sample analyses show good recovery percentages (97.3-102.4%). The minimum sampling rate was 100 samples per hour.  相似文献   

14.
Mononuclear ruthenium complex 1 and dinuclear complex 2 were synthesized by reaction of the appropriate bidentate pyrazolyl-pyridyl-based ligand L (L = 1,4-bis(3-(2-pyridyl)pyrazol-1-ylmethyl)benzene) with cis-Ru(bipy)(2)Cl(2)·2H(2)O. They were characterized by elemental analyses, ESI-MS, (1)H spectroscopy, and X-ray crystallography for 2. Compounds 1 and 2 both emit strongly in solid states and in solutions at 298 K with the lifetimes in the microsecond range. Electrogenerated chemiluminescence (ECL) of complexes 1 and 2 in the absence or presence of coreactant tri-n-propylamine (TPrA) or 2-(dibutylamino)ethanol (DBAE) at different working electrodes in acetonitrile and phosphate buffer solutions (PBS, pH 7.5) was studied. The ECL spectra are identical to the photoluminescence spectra, indicating that the ECL emissions are due to the metal to ligand charge transfer (MLCT). In all cases, ECL quantum efficiencies of dinuclear complex 2 are higher than those of mononuclear complex 1, and ECL quantum efficiencies of complexes 1 and 2/TPrA system are higher than those of DBAE system. It is noted that diuretic furosemide tends to decrease the ECL intensity of complex 2/TPrA system in PBS (pH 7.5) at GC working electrode. A novel ECL method for the determination of diuretic furosemide was developed with a linear range between 2.0 × 10(-7) mol L(-1) and 1.0 × 10(-6) mol L(-1), and a detection limit of 1.2 × 10(-8) mol L(-1) based on 3 times the ratio of signal-to-noise.  相似文献   

15.
Sun J  Xu X  Wang C  You T 《Electrophoresis》2008,29(19):3999-4007
Amphetamines including methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine were separated and detected by CE using simultaneous electrochemical (EC) and electrochemiluminescence (ECL) detection (CE-EC/ECL). Factors that influenced the separation and detection performance, such as the detection potential, the pH value and concentration of the running buffer, the separation voltage and the pH of the detection buffer, were investigated. LODs of 3.3x10(-8) mol/L (0.16 fmol), 1.6x10(-7) mol/L (0.78 fmol) and 3.3x10(-8) mol/L (0.16 fmol) were obtained for methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine, respectively. For practical application, a liquid-liquid extraction with ethyl acetate procedure was developed for urine sample pretreatment and extraction efficiencies higher than 90% were obtained. The established simultaneous CE-EC/ECL was successfully applied for urine sample analysis.  相似文献   

16.
Liu J  Yang X  Wang E 《Electrophoresis》2003,24(18):3131-3138
Capillary electrophoresis (CE) with tris(2,2'-bipyridyl) ruthenium (II) (Ru(bpy)3(2+)) electrochemiluminescence (ECL) detection technique was developed for the analysis of four polyamines (putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)) analysis. The four polyamines contain different amine groups, which have different ECL activity. There are several parameters which influence the resolution and ECL peak intensities, including the buffer pH and concentrations, separation voltage, sample injection, electrode materials, and Ru(bpy)3(2+) concentrations. Polyamines are separated by capillary zone electrophoresis in an uncoated fused-silica capillary (50 cmx25 micro m (ID) filled with acidic phosphate buffer (200 mmol/L phosphate, pH 2.0) - 1mol/L phosphoric acid (9:1 v/v) and a separation voltage of 5 kV (25 micro A), with end-column Ru(bpy)3(2+) ECL detection. A 5 mmol/L Ru(bpy)3(2+) solution plus 200 mmol/L phosphate buffer (pH 11.0) is added into the reagent reservoir. The calibration curve is linear over a concentration range of two or three orders of magnitude for the polyamines. The analysis time is less than 25 min. Detection limits for Put and Cad are 1.9x10(-7) mol/L and 7.6x10(-9) mol/L for Spd and Spm, respectively. Intraday and interday relative standard deviations of ECL peak intensities are less than 8%. The main advantages of this CE-ECL detection technique for polyamines analysis presented herein are the omission of chemical derivatization of the analytes and the high selectivity.  相似文献   

17.
X Zheng  Z Guo  Z Zhang 《Analytical sciences》2001,17(9):1095-1099
Based on a new electrogenerated chemiluminescence (ECL) analytical idea, this paper explains a sensitive and selective flow-injection ECL method using luminol for the determination of isoniazid, based on the sensitizing effect of isoniazid for the weak ECL emission of electrochemically oxidized luminol. Under the optimum experimental conditions, the relative ECL intensity was linear with isoniazid concentration in the range of 4.0 x 10(-8) mol/L to 8.0 x 10(-6) mol/L and with a detecting limit of 2.8 x 10(-8) mol/L.  相似文献   

18.
A simple, reliable and reproducible method, based on capillary zone electrophoresis with amperometric detection, has been developed for the determination of idarubicin in human urine. A carbon disk electrode was used as working electrode. The optimal conditions of separation and detection were pH 5.6 phosphate buffer (0.20 mol/L), 22 kV for the separation voltage and 1.00 V (vs. Ag/AgCl, 3 mol/L KCl) for the detection potential. The linear range was from 4.0 x 10(-7) to 2.0 x 10(-5) mol/L with a regression coefficient of 0.9986, and the detection limit was 8.0 x 10(-8) mol/L. The method was directly applied to the determination of idarubicin in spiked human urine without any other sample pretreatment except filtration, and the assay results were satisfactory.  相似文献   

19.
A novel electrochemiluminescence (ECL) type was proposed based on successive electro- and chemo-oxidation of oxidable analyte, which was different from both annihilation and coreactant ECL types in mechanism. Rifampicin was used as a model compound. No any chemiluminescence (CL) was produced by either electrochemical oxidation or chemical oxidation of rifampicin in KH(2)PO(4)--Na(2)B(4)O(7) (pH 6.6) buffer-dodecyl trimethyl ammonium chloride (DTAC) solution. However, an ECL was observed by electrochemical oxidization of rifampicin in the same solution in the presence of oxidant such as dissolved oxygen, activated oxygen and potassium peroxydisulfate (K(2)S(2)O(8)). The ECL was attributed to electrochemical oxidation of rifampicin to form semiquinone free radical, and then subsequently chemical oxidation of the formed radical by oxidant to form excited state rifampicin quinone. The proposed ECL type introduced additional advantages such as high selectivity, simple and convenient operation, and effective avoidance of side reaction that often took place in homogenous CL reaction, and will open a novel application field. In addition, with the ECL in the presence of K(2)S(2)O(8) as oxidant, a flow injection ECL method for the determination of rifampicin was proposed. The ECL intensity was linear with rifampicin concentration in the range of 1.0 x 10(-7) to 4.0 x 10(-5) mol l(-1) and the limit of detection (s/n=3) was 3.9 x 10(-8) mol l(-1). The proposed method was applied to the determination of rifampicin in pharmaceutical preparations and human urine.  相似文献   

20.
Zhou Y  Nagaoka T  Li F  Zhu G 《Talanta》1999,48(2):461-467
A novel chemiluminescence (CL) system was evaluated for the determination of hydrogen peroxide, glucose and ascorbic acid based on hydrogen peroxide, which has a catalytic-cooxidative effect on the oxidation of luminol by KIO(4). Hydrogen peroxide can be directly determined by luminol-KIO(4)-H(2)O(2) CL system. The detection limit was 3.0x10(-8) mol l(-1) and the calibration graph was linear over the range of 2.0x10(-7)-6.0x10(-4) mol l(-1). The relative standard deviation of H(2)O(2) was 1.1% for 2.0x10(-6) mol l(-1) (N=11). Glucose was indirectly determined through measuring the H(2)O(2) generated by the oxidation of glucose in the presence of glucose oxidase at pH 7.6. The present method provides a source for H(2)O(2), which, in turn, coupled with the luminol-KIO(4)-H(2)O(2) CL reaction system. The CL was linearly correlated with glucose concentration of 0.6-110 mug ml(-1). The relative standard deviation was 2.1% for 10 mug ml(-1) (N=11). Detection limit of glucose was 0.08 mug ml(-1). Ascorbic acid was also indirectly determined by the suppression of luminol-KIO(4)-H(2)O(2) CL system. The calibration curve was linear over the range of 1.0x10(-7)-1.0x10(-5) mol l(-1) of ascorbic acid. The relative standard deviation was 1.0% for 8.0x10(-7) mol l(-1) (N=11). Detection limit of ascorbic acid was 6.0x10(-8) mol l(-1). These proposed methods have been applied to determine glucose, ascorbic acid in tablets and injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号