首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
模拟电路故障诊断的BP神经网络方法   总被引:26,自引:1,他引:26  
提出了一种采用改进型的BP神经网络诊断模拟电路故障的新方法。介绍了包括附加动量法和自适应学习速率法在内的改进型的BP网络算法,其中附加动量法是在每一个权值的变化上加上一项正比于前次权值变化量的值,不仅考虑了误差在梯度上的作用,而且考虑在曲面上变化趋势的影响;自适应学习速率是根据误差函数值的变化对学习率进行实时调整,可以保证网络总是以最大的学习速率学习。最后,本文给出了仿真实例,实验证明所提出的方法与传统方法相比有更好的实时性和诊断效率。  相似文献   

2.
本文论述了BP神经网络的结构和学习算法以及应用到故障诊断中的原理和过程。详细地分析了拖拉机变速箱的工作原理,并讨论了利用BP神经网络的优点,应用到该工程的故障诊断中。通过试验证明,基于神经网络的故障诊断已经逐步走向成熟。  相似文献   

3.
基于改进的BP神经网络齿轮箱故障诊断方法的研究   总被引:1,自引:0,他引:1  
针对BP神经网络存在局部极小值和收敛速度慢等问题,提出了一种RPROP的改进的BP神经网络.RPROP神经网络具有优良的非线性映射能力,可以很好地描述频率特征和诊断结果之间的关系.本文利用MATLAB结合齿轮箱故障建立了标准BP神经网络和本文提出的改进BP神经网络的两个故障诊断模型,并时其性能做了分析和对比.实验表明,基于改进的BP神经网络的齿轮箱故障诊断方法可以大大提高故障诊断的精确性,缩短了诊断时间.  相似文献   

4.
基于神经网络的轴承故障诊断方法   总被引:2,自引:0,他引:2  
研究了基于神经网络的轴承故障诊断方法,应用于球轴承、圆锥轴承和圆柱轴承在轴承疲劳试验机上实际运行产生的各种真实故障的诊断,结果表明:该方法具有较好的效果。  相似文献   

5.
基于遗传-神经网络的电机故障诊断   总被引:4,自引:0,他引:4  
本文采用非线性最小二乘法中的LM(Leven-berg-Marquardt)算法,结合遗传算法进行电机故障诊断的方法,并应用于电机故障的仿真实验,性能明显优于单一的算法结构.1神经网络模型及算法本文采用的LM算法是一种利用标准数值优化技术的快速算法,是高斯-牛顿法的改进形式[1].LM算法网络  相似文献   

6.
首先简要介绍了汽车发动机故障诊断系统及基于神经网络的发动机故障诊断分析方法,其次利用神经网络知识建立起带有单隐层的三层神经网络;在理论分析的基础上,利用MATLAB软件的simulink和神经网络工具箱,分别对发动机故障进行检测和分析,仿真结果表明:利用BP神经网络对发动机故障进行检测具有检测精度高、速度快的特点。  相似文献   

7.
基于神经网络的三相全控桥整流电路故障诊断   总被引:9,自引:0,他引:9  
电力电子电路的诊断具有相当的复杂性,主要原因之一是由于功率器件的损坏造成主电路结构的改变.而晶闸管是整流装置中最容易损坏的器件,因此,晶闸管的故障诊断成为电力电子电路故障诊断的首要重点.提出一种用前向神经网络来诊断三相全控桥整流电路晶闸管故障的方法.对电路发生故障时输出的波形进行分析,用故障波形的采样数据制作的样本对神经网络进行训练,将训练好的神经网络用于故障诊断.仿真和实验表明该方法是有效的.  相似文献   

8.
传统的柴油机故障诊断与处理方法主要都是以定期保养和事后维修为主,缺乏针对事故的预见能力,且效率比较低,成本较高。这就为人工智能技术在柴油机故障诊断上的应用开辟了广阔的空间。本文主要以非线性并行分布处理为主的神经网络为研究理论,通过对建立的BP网络模型,RBF网络模型和Elman网络模型进行了比较,发现这三种网络虽然各有特点和优势,但均适用于特定条件下的故障诊断要求。  相似文献   

9.
针对某装备故障诊断中多故障原因和多故障征兆的复杂对应关系,本文在分析其故障模式复杂性的基础上,设计了该装备基于BP神经网络方法的智能故障诊断模型,介绍了该模型具体实现过程中的关键技术,并通过仿真实验对模型性能进行了分析。  相似文献   

10.
基于神经网络方法的系统故障诊断   总被引:1,自引:0,他引:1  
在Malek模型下,构造了一个连续Hopfied神经网络来解决多处理系统中最可能的故障处理机集问题,并对此方法进行了仿真。  相似文献   

11.
电力变压器油中溶解气体的色谱分析是变压器故障诊断的重要方法,通过该方法可以间接了解变压器的运行状态和内部潜在故障.人工神经网络已经成功地应用于电力变压器故障诊断,但学习样本数多和输入输出关系复杂性减慢了网络的收敛速度.为解决此问题,将用遗传算法改进的小波神经网络应用于电力变压器故障诊断,克服小波算法易于陷入局部极小、收敛速度慢等缺点.  相似文献   

12.
基于神经网络的控制仿真与故障诊断   总被引:1,自引:0,他引:1       下载免费PDF全文
基于人工神经网络的自学习、自组织功能和能够表达复杂关系的特点,针对桑塔纳2000空调、冷却系统的控制关系,建立了相关神经网络仿真模型并进行了仿真研究。事实证明,该神经网络仿真模型是复杂车辆控制系统的控制关系分析和故障诊断的一种便捷、有效的方法。  相似文献   

13.
《河南科学》2016,(12):1961-1967
在神经网络模型中,训练样本的不同特征变量(输入变量)反映响应变量(输出变量)的灵敏程度有一定的差别,若将各特征变量直接作为神经网络的输入,则会湮没一些弱小量可能含有的有效信息.采用油中溶解气体分析法建立以变压器油中溶解气体含量为输入,变压器故障类型为输出的BP神经网络变压器故障诊断模型,分别运用最大值最小值规范化、一般浓度规范化、特征浓度规范化三种方法对训练样本进行规范化.研究结果表明,不同样本规范化方法对故障诊断效果的影响显著,运用特征浓度规范化进行规范化处理要优于其他方法.  相似文献   

14.
针对故障诊断中设备监控数据越来越多的特点,提出用于故障诊断的粗糙神经网络模型。此模型的创新点是基于SOFM网络和差别矩阵的离散化算法,此算法不但指导属性划分类数,而且保证了得到最优属性约简,同时,充分利用了粗糙集和神经网络的故障诊断能力来保证诊断结果的准确性和彻底性。实践证明:此模型在工程上有着很好的适用性和可信性,能够为解决现代工业工程中的故障诊断提供有效的参考。  相似文献   

15.
针对传统故障诊断技术的不足,提出一种基于Kohonen神经网络的故障诊断方法,其使用一种由邻域函数决定权重调整程度的改进SOM算法进行学习,避免基本SOM算法中调整权重前的邻域判断过程,有利于提高网络的学习速度和自适应性.以齿轮故障诊断为例进行Matlab仿真实验,实验结果表明该方法不但可行,而且诊断速度快、准确率高.  相似文献   

16.
基于蚁群神经网络的设备故障诊断   总被引:2,自引:0,他引:2  
BP算法在神经网络中应用较为广泛,但有收敛速度慢、易于陷入局部极小的缺点,而蚁群算法是一种新型的模拟进化算法,有正反馈、分布式计算、全局收敛、启发式学习等特点.将蚁群算法和神经网络结合起来,应用于设备故障专家系统的知识荻取和诊断推理中,可以提高运算效率,具有很好的应用前景.利用该方法,对测得的样本数据进行实验分析,证明此系统具有推理效率及准确性较高的特点.  相似文献   

17.
在Malek模型下,构造了一个连续Hopfield神经网络来解多处理机系统中最可能的故障处理机集问题,并对此方法进行了仿真。  相似文献   

18.
根据 BP神经网络的特点和性能以及电路故障诊断的要求 ,采用了 BP网络的权值与故障模式相对应的方法来进行电路的故障诊断 .该方法利用改进的 BP算法 ,首先建立故障模式 ,然后将故障模式与 BP网络的权值相对应 ,最后将权值作为故障诊断知识 .对模拟电路的软故障进行了仿真 ,仿真结果良好  相似文献   

19.
李刚 《科技信息》2012,(20):371-372
本文利用BP神经网络对变压器进行故障诊断。该方法以变压器油中特征气体的含量作为输入参数,输入到经过训练之后的BP神经网络,经过实际输出与期望的对比分析表明,采用该方法对变压器进行故障诊断是有效的。  相似文献   

20.
本文介绍BP神经网络在模拟电路故障诊断中的应用并对选定的待测电路在元件存在容差的条件下,仿真实现了模拟电路软故障诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号