首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
We demonstrate a hydrothermal method to fabricate a composite of reduced graphene oxide (rGO) with hollow Co9S8 derived from metal organic framework (MOF), which exhibits a high specific capacitance of 575.9 F/g at 2 A/g and 92.0% capacitance retention after 9000 cycles.  相似文献   

2.
《中国化学快报》2020,31(9):2177-2188
In the past few years, the increasing energy consumption of traditional fossil fuels has posed a huge threat to human health. It is very imperious to develop the sustainable and renewable energy storage and conversion devices with low cost and environment friendly features. Hybrid supercapacitors are emerging as one of the promising energy devices with high power density, fast charge-discharge process and excellent cycle stability. However, morphology and structure of the electrode materials exert serious effect on their electrochemical performances. In this review, we summarized recent progresses in transition metal oxide based electrode materials for supercapacitors. Different synthesis routes and electrochemical performances of electrode materials and storage mechanisms of supercapacitor devices have been presented in details. The future developing trends of supercapacitor based on metal oxide electrode materials are also proposed.  相似文献   

3.
Nanocomposite of Co3O4 and MCNT was synthesised using one step solvothermal method, and an electrochemical non-enzymatic glucose sensor (Co3O4-MCNT/GCE) was successfully constructed. This sensor was used successfully for the quantitative analysis of trace glucose in serum sample.  相似文献   

4.
《印度化学会志》2023,100(1):100817
Supercapacitors are high energy density and power density materials in the electronics industry. Noble metals and their composites have been the most successfully applied in supercapacitors. This review is focused on noble metal-based materials that have been used to improve electrochemical supercapacitors over the last decade. This review describes the role of various noble metals, binary composites with transition metals, binary composites with carbon-based materials, and ternary composites containing both transition metals and carbon-based materials as supercapacitor electrode materials. The effects of the electrode material, growth tactics, structure, size and morphology of the nanostructured materials on device performance are discussed.  相似文献   

5.
The liquid-phase synthesis of metal oxide nanoparticles in organic solvents under exclusion of water is nowadays a well-established alternative to aqueous sol–gel chemistry. In this article, we highlight some of the advantages of these routes based on selected examples. The first part reviews some recent developments in the synthesis of ternary metal oxide nanoparticles by surfactant-free nonaqueous sol–gel routes, followed by the discussion of the morphology-controlled synthesis of lanthanum hydroxide nanoparticles, and the presentation of structural peculiarities of manganese oxide nanoparticles with an ordered Mn vacancy superstructure. These examples show that nonaqueous systems, on the one hand, allow the preparation of compositionally complex oxides, and, on the other hand, make use of the organic components (initially present or formed in situ) in the reaction mixture to tailor the morphology. Furthermore, obviously even the crystal structure can differ from the corresponding bulk material like in the case of MnO nanoparticles. In the second part of the paper we present original results regarding the synthesis of dilute magnetic semiconductor TiO2 nanoparticles doped with cobalt and iron. The structural characterization as well as the magnetic properties with special attention to the doping efficiency is discussed.  相似文献   

6.
《Analytica chimica acta》2002,459(2):219-228
An “electronic nose” has been used for the detection of adulterations of virgin olive oil. The system, comprising 12 metal oxide semiconductor sensors, was used to generate a pattern of the volatile compounds present in the samples. Prior to different supervised pattern recognition treatments, feature selection techniques were employed to choose a set of optimally discriminant variables. Linear discriminant analysis (LDA), quadratic discriminant analysis (QDA) and artificial neural networks (ANN) were applied. Excellent results were obtained in the differentiation of adulterated and non-adulterated olive oils and it was even possible to identify the type of oil used in the adulteration. Promising results were also obtained as regards quantification of the percentages of adulteration.  相似文献   

7.
In the fabrication of flexible devices, highly ordered nanoscale texturing, such as semiconductor metal oxide nanorod arrays on flexible substrates, is critical for optimal performance. Use of transparent conducting films, metallic films, and polymer substrates is limited by mechanical brittleness, chemical and thermal instability, or low electrical conductivity, low melting point, and so on. A simple and general nanocrystal-seed-directed hydrothermal route has now been developed for large-scale growth of nanorod arrays of various semiconductor metal oxides (MO), including TiO(2), ZnO, MnO(2), CuO, and ZrO(2) on both sides of flexible graphene (G) sheets to form sandwichlike MO/G/MO heterostructures. The TiO(2)/G/TiO(2) heterostructures have much higher photocatalytic activity than TiO(2) nanorods, with a photocatalytic degradation rate of methylene blue that is four times faster than that of the TiO(2) nanorods, and are thus promising candidates for photocatalytic decontamination.  相似文献   

8.
Nonaqueous solution routes to metal oxide nanoparticles are a valuable alternative to the well-known aqueous sol-gel processes, offering advantages such as high crystallinity at low temperatures, robust synthesis parameters and ability to control the crystal growth without the use of surfactants. In the first part of the review, we give an overview of the various nonaqueous routes to metal oxides, their surface functionalization and their assembly into well-defined nanostructures. However, we will strongly focus on surfactant-free processes developed in our group. Within the various reaction systems such as metal halides—benzyl alcohol, metal alkoxides—benzyl alcohol, metal alkoxides—ketones, metal acetylacetonates—benzyl alcohol and metal acetylacetonates—benzylamine we will discuss representative examples in order to show the versatility of this approach. The careful characterization of the organic species in the final reaction mixtures provides information about possible condensation mechanisms. Depending on the system several reaction pathways have been postulated: (i) elimination of organic ethers as result of condensation between two metal alkoxide precursors; (ii) C–C bond formation between the alkoxy ligand of the metal alkoxide precursor and the solvent benzyl alcohol under formation of a metal hydroxyl species, which can undergo further condensation; (iii) ketimine and aldol-like condensation steps, which in the metal acetylacetonate systems are preceded by a solvolysis of the precursor, involving C–C bond cleavage. In the second part of the paper we will focus on the synthesis of indium oxide nanoparticles using different precursors and solvents. Indium oxide represents an instructive example how the oxide precursors and the solvents influence the particle morphology. These findings make it possible to tailor particle size and shape of a particular metal oxide by the appropriate choice of the reaction system.  相似文献   

9.
Carbon electrodes are a key factor for electric double layer capacitors (EDLCs). Carbon gels have high porosity with a controllable pore structure by changing synthesis conditions and modifying preparation processing to improve the electrochemical performance of EDLCs. This review summarizes the preparation of carbon gels and their derivatives, the criteria to synthesize high surface area in each process, the development by some carbon forms, and EDLC applications. Porous carbons are also prepared as model materials by concentrating on how pore structure increases electrochemical capacitance, such as electronic and ion resistance, the tortuosity of pore channel, suitable micropore and mesopore sizes, and mesopore size distribution. This review emphasizes the significance of pore structures as the key factor to allow for the design of suitable pore structures that are suitable as the carbon electrode for EDLCs.  相似文献   

10.
Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM– to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm−2 mM−1 as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples.  相似文献   

11.
This review describes a study of catalytic functions of water splitting at the surface and hydrogen gas emitting from the bulk of metal–oxide layered materials as well as hydrogen storage materials as its application by means of the ion beam analysis techniques. First are described a microscopic model for water splitting at the oxide surface and mass balance equations for hydrogen atoms in the bulk. The latter is a mathematical expression of a one‐way diffusion model proposed for an anomalous isotope effect in D–H and H–D replacements of both deuterium (D) implanted into perovskite oxide ceramics by protium (H) in H2O vapour and the vise versa. The latter model brings about finding of catalytic functions of water splitting at the surface and hydrogen gas emitting from the bulk. Second, experimental results on the anomalous isotope effect are presented and the D–H replacement rates are described in detail. Subsequently are shown results on H2 gas emission measured with a Bach method, which give a clear evidence for the water splitting and hydrogen gas emitting catalytic functions of the oxide surface. Finally, we present experimental data on the hydrogen absorption and emission characteristics of the metal–oxide layered hydrogen storage materials as an application of the water splitting and hydrogen absorbing catalysts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号