首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用于描述核物质中子质子单粒子能量之差的对称能,最近20年得到了核物理学界的广泛关注。在饱和核密度附近,对称能的数值及斜率基本得到约束,然而其高密行为至今仍具有很大的不确定性。当前,探测对称能的研究计划正在世界范围内能够提供放射性束流的实验室展开。伴随着对称能相关实验的规划、进行,发展更加先进的同位旋依赖的输运理论模型变得非常必要。我们将核子-核子短程关联及介质中同位旋依赖的重子-重子非弹性散射截面等研究的新进展融入到了同位旋依赖的输运模型里面;探索了新的敏感于高密对称能的可观测量,比如挤出核子的中质比、光子、轻碎片,以及包含奇异隐奇异夸克的介子产生等;提出了高密对称能探测盲点的问题并给出解决办法;对于常见的对称能敏感观测量的模型预言的不确定性进行了彻底细致的研究;提出采用定性观测量,比如高能出射粒子的中质比,将高密对称能进行定性约束;率先提出并研究了对称能敏感观测量的探测密度区间问题,指出对称能敏感观测量的探测密度往往小于核反应最大压缩密度;发现核子-核子短程关联明显削弱观测量的对称能效应;考虑到饱和点处对称能斜率的约束范围,基于输运模型,提出通过探测对称能的曲率来约束高密对称能。除了利用重离子碰撞约束高密对称能之外,人们也可以通过与中子星相关的大量天体观测来间接约束高密对称能。  相似文献   

2.
基于协变密度泛函(CDF)理论,核物质四阶对称能可以被分解为动能部分,同位旋单态势能部分以及同位旋三重态势能部分。交换项的引入明显改变了同位旋单态势能部分和同位旋三重态势能部分的密度行为,特别是来自同位旋标量介子-核子耦合道的交换项贡献提供了一个压制作用。作为一种有益的尝试,引入广义的对称能,可以更直观地统一描述核物质各阶对称能效应。The density dependence of nuclear fourth-order symmetry energy S4 is studied within the covariant density functional (CDF) theory in terms of the kinetic energy, isospin-singlet, and isospin-triplet potential energy parts of the energy density functional. When the Fock diagram is introduced, it is found that both isospin-singlet and isospin-triplet components of the potential energy plays important roles in determining the fourth-order symmetry energy. Especially, an extra suppression, which comes from the Fock terms via isoscalar meson-nucleon coupling channels, is revealed in the isospin-triplet potential part of the fourth-order symmetry energy. As an useful attempt, the generalized symmetry energy is introduced to describe the various orders of nuclear symmetry energies in a visual and self-consistent way.  相似文献   

3.
Based on the semi-classical Thomas-Fermi approximation together with the Skyrme energy-density functional, we study the deformation dependence of symmetry energy coefficients of finite nuclei. The symmetry energy coefficients of nuclei with mass number A = 40, 100, 150, 208 are extracted from two-parameter parabola fitting to the calculated energy per particle. We find that the symmetry energy coefficients decrease with the increase of nuclear quadrupole deformations, which is mainly due to the isospin dependence of the difference between the proton and neutron surface diffuseness. Large deformations of nuclei can cause the change of the symmetry energy coefficient by about 0.5 Me V and the influence of nuclear deformations on the symmetry energy coefficients is more evident for light and intermediate nuclei.  相似文献   

4.
密度依赖的对称能作为核物质状态方程的同位旋相关部分,是当前核物理和天体物理两个领域共同关注的重要热点问题之一。人们在实验和理论两方面对此进行了大量的探索,然而由于问题的困难性,对其研究尚未达成共识。目前,研究对称能的方法有很多,其中包括微观和唯像核多体理论、重离子碰撞、原子核的巨共振等。近年来,低密对称能的研究已经取得了重要进展。本文综述了利用有限核的信息来约束核物质对称能的密度依赖性方面的研究工作,这一研究途径尽可能地降低了理论分析的模型依赖性。研究表明,208Pb对称能(系数)asym(A)等于参考密度ρA=0.55ρ0处的核物质对称能(系数)。这个关系将有限核与核物质的对称能联系了起来,借此可以探究亚饱和密度核物质对称能的密度依赖性,因此核心目标是准确确定208Pb对称能(系数)。我们通过重核β-衰变能和质量差来提取208Pb对称能(系数),进而约束亚饱和密度下核物质对称能的密度依赖行为。  相似文献   

5.
Using an isospin-dependent transport model, we study the effects of nuclear symmetry energy on two-nucleon correlation functions in heavy-ion collisions induced by neutron-rich nuclei. We find that the density dependence of the nuclear symmetry energy affects significantly the nucleon emission times in these collisions, leading to larger values of two-nucleon correlation functions for a symmetry energy that has a stronger density dependence. Two-nucleon correlation functions are thus useful tools for extracting information about the nuclear symmetry energy from heavy-ion collisions.  相似文献   

6.
We adopt the Nambu–Jona-Lasinio(NJL) model to study the crust-core transition properties in neutron stars(NSs). For a given momentum cutoff and symmetry energy of saturation density in the NJL model, decreasing the slope of the symmetry energy gives rise to an increase in the crust-core transition density and transition pressure.Given the slope of the symmetry energy at saturation density, the transition density and corresponding transition pressure increase with increasing symmetry energy. The increasing trend between the fraction of the crustal moment of inertia and the slope of symmetry energy at saturation density indicates that a relatively large momentum cutoff of the NJL model is preferred. For a momentum cutoff of 500 Me V, the fraction of the crustal moment of inertia clearly increases with the slope of symmetry energy at saturation density. Thus, at the required fraction(7%) of the crustal moment of inertia, the NJL model with momentum cutoff of 500 Me V and a large slope of the symmetry energy of saturation density can give the upper limit of the mass of the Vela pulsar to be above 1.40 M_⊙.  相似文献   

7.
The N/Z ratio of free nucleons from collisions of neutron-rich nuclei as a function of their momentum is studied by means of isospin-dependent Quantum Molecular Dynamics. We find that this ratio is not only sensitive to the form of the density dependence of the symmetry potential energy but also its strength determined by the symmetry energy coefficient. The uncertainties about the symmetry energy coefficient influence the accuracy of probing the density dependence of the symmetry energy by means of the N/Z ratio of free nucleons of neutron-rich nuclei.  相似文献   

8.
基于同位旋相关的量子分子动力学模型,研究了对称势、束流能量、对称能强度系数对中能重离子碰撞反应系统的熵的影响。研究发现,对称势对熵有一定影响,且对熵的影响大小与反应系统中质比有关。另外发现在40Ca+40Ca和40Si+40Si反应系统中对称能强度系数对熵也有影响,当对称能强度系数c=32 MeV时,对这两个系统来说其对熵的影响最大。通过实验上对熵的测量可以得到对称势的形式和大小。Based on the isospin-dependent quantum molecular dynamics model,effects of the symmetry potential,incident beam energy and different symmetry energy strength coefficients on the entropy of reaction system are studied.The results show that the symmetry potential affects the entropy,and the effect changes with the neutron-proton ratio of the reaction system.Besides,in 40Ca+40Ca and 40Si+40Sireaction systems,the symmetry energy strength coefficient also has effect on the entropy when the symmetry energy strength coefficient c=32 MeV,the effect on the entropy is largest for the two systems.Therefore the form and size of symmetry potential could be obtained by comparison of the model calculation and the experiments on the measurement of entropy.  相似文献   

9.
A sensitive correlation between the ground-state properties of light kaonic nuclei and the symmetry energy at high densities is constructed under the framework of relativistic mean-field theory. Taking oxygen isotopes as an example, we see that a high-density core is produced in kaonic oxygen nuclei, due to the strongly attractive antikaonnucleon interaction. It is found that the 1 S_(1/2) state energy in the high-density core of kaonic nuclei can directly probe the variation of the symmetry energy at supranormal nuclear density, and a sensitive correlation between the neutron skin thickness and the symmetry energy at supranormal density is established directly. Meanwhile, the sensitivity of the neutron skin thickness to the low-density slope of the symmetry energy is greatly increased in the corresponding kaonic nuclei. These sensitive relationships are established upon the fact that the isovector potential in the central region of kaonic nuclei becomes very sensitive to the variation of the symmetry energy. These findings might provide another perspective to constrain high-density symmetry energy, and await experimental verification in the future.  相似文献   

10.
对称能表征了同位旋非对称强相互作用物质状态方程的同位旋相关部分,它对于理解核物理和天体物理中的许多问题有重要意义。简要总结了关于核物质和夸克物质对称能研究的最新进展。对于核物质对称能,通过对核结构,核反应以及中子星的研究,目前对其亚饱和密度的行为已有比较清楚的认识,同时,对饱和密度附近对称能的约束也取得了很好的研究进展。但如何确定核物质对称能的高密行为仍然是一个挑战。另一方面,在极端高重子数密度条件下,强相互作用物质将以退禁闭的夸克物质状态存在。同位旋非对称夸克物质可能存在于致密星内部,也可能产生于极端相对论重离子碰撞中。对最近关于夸克物质对称能对夸克星性质的影响以及重夸克星的存在对夸克物质对称能的约束的研究工作进行了介绍,结果表明同位旋非对称夸克物质中上夸克和下夸克可能感受到很不一样的相互作用,这对于研究极端相对论重离子碰撞中部分子动力学的同位旋效应有重要启发。The symmetry energy characterizes the isospin dependent part of the equation of state of isospin asymmetric strong interaction matter and it plays a critical role in many issues of nuclear physics and astrophysics. In this talk, we briefly review the current status on the determination of the symmetry energy in nucleon (nuclear) and quark matter. For nuclear matter, while the subsaturation density behaviors of the symmetry energy are relatively well-determined and significant progress has been made on the symmetry energy around saturation density, the determination of the suprasaturation density behaviors of the symmetry energy remains a big challenge. For quark matter, which is expected to appear in dense matter at high baryon densities, we briefly review the recent work about the effects of quark matter symmetry energy on the properties of quark stars and the constraint of possible existence of heavy quark stars on quark matter symmetry energy. The results indicate that the u and d quarks could feel very different interactions in isospin asymmetric quark matter, which may have important implications on the isospin effects of partonic dynamics in relativistic heavy-ion collisions.  相似文献   

11.
The effect of density-dependent symmetry energy on elliptical flow is studied using the isospin-dependent quantum molecular dynamics model (IQMD). We have used the reduced isospin-dependent cross-section with hard (H) equation of state to study the sensitivity of the elliptical flow to symmetry energy in the energy range 50-1000MeV/nucleon. The elliptical flow becomes zero at a particular energy termed as transition energy. A systematic effort has been made to pin down the transition energy for the density-dependent symmetry energy.  相似文献   

12.
通常人们在有限核与核子物质中研究对称能,而本工作利用相对论平均场模型研究包含超子和夸克自由度物质的对称能。发现了含超子和夸克自由度物质中对称能的表观软化,并用相对论模型对此做了阐述。该软化现象提示由重离子碰撞产生的含非核子自由度致密物质的对称能提取将有待细致的甄别。  相似文献   

13.
B K AGRAWAL 《Pramana》2014,83(5):695-704
The nuclear symmetry energy at a given density measures the energy transferred in converting symmetric nuclear matter into the pure neutron matter. The density content of nuclear symmetry energy remains poorly constrained. Our recent results for the density content of the nuclear symmetry energy, around the saturation density, extracted using experimental data for accurately known nuclear masses, giant resonances and neutron-skin thickness in heavy nuclei are summarized.  相似文献   

14.
The density-dependence of symmetry energy is of particular importance to many problems in nuclear physics and astrophysics. By using the functional path integral method, we show explicitly the relation between nuclear symmetry energy and isospin susceptibility. The latter one is found to be a probe to the QCD chiral phase transition. We further found in the Nambu-Jona-Lasinio model calculations that, the nuclear symmetry energy has an abrupt change at the critical nuclear density where the chiral symmetry restores partially.  相似文献   

15.
The impact of symmetry energy slope L on the axial w-mode oscillations is explored, where the range of the con- strained slope L of symmetry energy at saturation density is adopted from 25 MeV to 115 MeV while keeping the equation of state (EOS) of symmetric nuclear matter fixed. Based on the range of the symmetry energy slope, a constraint on the frequency and damping time of the wi-mode of the neutron star is given. It is found that there is a perfect linear relation between the frequency and the stellar mass for a fixed slope L, and the softer symmetry energy corresponds to a higher frequency. Moreover, it is confirmed that both the frequencies and damping times have a perfect universal scaling behavior for the EOSs with different symmetry energy slopes at saturation density.  相似文献   

16.
B K AGRAWAL  J N DE  S K SAMADDAR 《Pramana》2014,82(5):823-830
The nature of equation of state for the neutron star matter is crucially governed by the density dependence of the nuclear symmetry energy. We attempt to probe the behaviour of the nuclear symmetry energy around the saturation density by exploiting the empirical values for volume and surface symmetry energy coefficients extracted from the precise data on the nuclear masses.  相似文献   

17.
Using an isospin- and momentum-dependent hadronic transport model, we investigate effects of the symmetry energy on several collective flows in heavy-ion collisions induced by radioactive beams at intermediate energies. It is found that the neutron-proton differential directed flow and the neutron-proton differential elliptic flow are strongly correlated with the symmetry energy, while the position averaged radial flow is weakly correlated with the symmetry energy.  相似文献   

18.
Within the hadronic transport model IBUU04, we investigate the effect of density-dependent symmetry energy on double neutron/proton (n/p) ratio of free nucleons in heavy ion collisions by taking four isotopic Sn+Sn reaction systems. Especially the entrance-channel asymmetry and impact-parameter dependence of the effect of symmetry energy are discussed. It is found that in both central and semi-central collisions the sensitivity of the double n/p ratio to the density-dependent symmetry energy is more pronounced in neutron-richer systems. Our results also indicate clearly that the effect of symmetry energy is stronger in central collisions than that in semi-central collisions.  相似文献   

19.
The microscopic mechanisms of the symmetry energy in nuclear matter are investigated in the framework of the relativistic Brueckner-Hartree-Fock (RBHF) model with a high-precision realistic nuclear potential, pvCDBonn A. The kinetic energy and potential contributions to symmetry energy are decomposed. They are explicitly expressed by the nucleon self-energies, which are obtained through projecting the G-matrices from the RBHF model into the terms of Lorentz covariants. The nuclear medium effects on the nucleon self-energy and nucleon-nucleon interaction in symmetry energy are discussed by comparing the results from the RBHF model and those from Hartree-Fock and relativistic Hartree-Fock models. It is found that the nucleon self-energy including the nuclear medium effect on the single-nucleon wave function provides a largely positive contribution to the symmetry energy, while the nuclear medium effect on the nucleon-nucleon interaction, i.e., the effective G-matrices provides a negative contribution. The tensor force plays an essential role in the symmetry energy around the density. The scalar and vector covariant amplitudes of nucleon-nucleon interaction dominate the potential component of the symmetry energy. Furthermore, the isoscalar and isovector terms in the optical potential are extracted from the RBHF model. The isoscalar part is consistent with the results from the analysis of global optical potential, while the isovector one has obvious differences at higher incident energy due to the relativistic effect.  相似文献   

20.
We analyze microscopic many-body calculations of the nuclear symmetry energy and its density dependence. The calculations are performed in the framework of the Brueckner-Hartree-Fock and the self-consistent Green’s functions methods. Within Brueckner-Hartree-Fock, the Hellmann-Feynman theorem gives access to the kinetic energy contribution as well as the contributions of the different components of the nucleon-nucleon interaction. The tensor component gives the largest contribution to the symmetry energy. The decomposition of the symmetry energy in a kinetic part and a potential energy part provides physical insight on the correlated nature of the system, indicating that neutron matter is less correlated than symmetric nuclear matter. Within the self-consistent Green’s function approach, we compute the momentum distributions and we identify the effects of the high momentum components in the symmetry energy. The results are obtained for the realistic interaction Argonne V18 potential, supplemented by the Urbana IX three-body force in the Brueckner-Hartree-Fock calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号