共查询到18条相似文献,搜索用时 140 毫秒
1.
2.
3.
研究了苯二酚三种分异构体水溶液的紫外吸收光谱,在PH3.6的缓冲溶液中,邻、间、对苯二酚的紫我吸收峰分别为275nm,273nm和288nm三者重叠严重。选取在240nm-290nm范围内,每隔1nm测量一次吸光值截51个点,采用卡尔曼滤波进行处理,可以获得较满意的结果,对10个不同比例组成 标准混合液进行测定,邻、间、对苯二酚三者的平均回收率分别为97.4%,101、7%和98.0%,标准偏差分 相似文献
4.
多波长线性回归—导数分光光度法测定对苯二酚,邻苯二酚和苯酚 总被引:4,自引:2,他引:4
本文将导数分光光度法与多波长线性回归法联用,测定了电有机合成产品中的对苯二酚,邻苯二酚和苯酚的含量,回收率在95.0%~100.1%之间,模拟合成样品分析结果的相对误差对0.1%~6.6%。方法简便。 相似文献
5.
因子分析-导数光度法同时测定苯酚、间苯二酚、对苯二酚混合体系的比较 总被引:18,自引:1,他引:18
同时采集多事体系的紫外基谱和一阶导数光谱数据,用因子分析技术地两套数据进行分析对比,结果表明一阶导数光谱数据经因子分析法同时测定混合多酚所得结果明显优于基本光谱数据经因子分析法所得结果,具有明显的消除背景干扰,提高灵敏度等优点。 相似文献
6.
采用滴涂法和电沉积法制备了石墨烯/铁氰化钴复合膜修饰玻碳电极. 用扫描电镜对该纳米复合膜进行了表征.用循环伏安法研究了对苯二酚(HQ)、邻苯二酚(CT)和间苯二酚(RS)在修饰电极上的电化学行为. 实验结果表明, 相对于裸玻碳电极和石墨烯修饰电极, HQ, CT 和RS 在石墨烯/铁氰化钴修饰电极上的氧化峰电流显著提高. 利用差分脉冲伏安法测定, HQ, CT 和RS 分别在1.0×10-6~1.5×10-4 mol/L, 1.0×10-6~2.0×10-4 mol/L 和3.5×10-6~2.5×10-4 mol/L浓度范围内与氧化峰电流呈良好的线性关系, 相关系数分别为0.991, 0.993 和0.992. 信噪比为3 时, HQ, CT 和RS 检出限分别为2.0×10-7, 2.1×10-7 和3.5×10-7 mol/L. 将该方法用于水样分析, 回收率为95.6%~106.1%. 相似文献
7.
吸光度比值导数法同时测定苯酚,邻苯二酚和对苯二酚 总被引:16,自引:0,他引:16
研究了应用吸光度比值导测定苯酚,邻苯二酚对苯二酚3组分混合物。合成试样4次平行测定的相对标准偏差小于6%。回收率在95%-104%之间。 相似文献
8.
敌百虫在碱性溶液中与间苯二酚反应可生成荧光性的化合物。敌百虫的浓度在每25mL0-150μg的范围内与荧光强度呈线性关系,回收率为91%-102%,相对标准偏差为4.6%,检测限为0.070mg/m^3。研究了23种离子和农药的干扰情况。 相似文献
9.
10.
比值导数光谱法同时测定苯酚间苯二酚对苯二酚 总被引:2,自引:1,他引:2
以比值导数光谱法对苯酚、间苯二酚、对苯二酚的二组分和三组分混合体系进行了分析。方法以混合物的波谱除以干扰组分的波普得到比值波谱,再用“减(加)法技术”以比值波谱对波长求导得到比值导数波谱,方法兼具导数光谱能消除低频背景和高频噪声干扰的优点。由此得到的幽会导数波谱可完全消除干扰组分的吸光度的贡献,此法可很方便地对二组分体系进行测定。进一步以求得的比导数波谱对波长二次求导,可对三组分体系进行分析,用此 相似文献
11.
邻苯二酚和对苯二酚在钴氢氧化物膜修饰玻碳电极上的选择性测定 总被引:2,自引:0,他引:2
通过镀膜/循环伏安法制备了钴氢氧化物膜修饰的玻碳电极。该修饰电极对邻苯二酚(CA)和对苯二酚(HQ)具有较强的电催化活性。考察了支持电解质酸度对邻苯二酚和对苯二酚电化学响应的影响,选用0.1 mol/LPBS(pH 10.0)作为支持电解质。利用差示脉冲伏安法(DPV)对邻苯二酚和对苯二酚进行选择性检测,当两者浓度同时改变时,邻苯二酚和对苯二酚在6~100μmol/L范围内氧化峰电流与其浓度呈良好的线性关系,检出限分别为2×10–7,5×10–7mol/L(S/N=3)。钴氢氧化物膜电极具有较好的稳定性、重现性及较强的抗干扰能力,将此修饰电极应用于模拟水样中邻苯二酚和对苯二酚的测定,回收率为95.4%~100.4%。 相似文献
12.
用Nafion将单壁碳纳米管(SWCNT)固定到玻碳电极(GCE)上,再利用电化学聚合方法将L-白氨酸(L-LEU)聚合到SWCNT/GCE上,制备得到poly L-LEU/SWCNT/GCE修饰电极。采用循环伏安法(CV)、差分脉冲伏安法(DPV)和电化学交流阻抗法(EIS)研究了对苯二酚(HQ)、邻苯二酚(CC)共存时,二者在修饰电极上的电化学行为。结果表明:此修饰电极对HQ和CC有很好的电催化和分离作用。二者在修饰电极上的氧化还原峰电流与GCE相比显著增强,HQ和CC的氧化峰电位差和还原峰电位差分别为124 mV和131 mV。HQ和CC的检测线性范围分别为2.0×10-7~1.0×10-4、5.0×10-7~1.0×10-4mol/L。检出限分别为8.0×10-8、1.0×10-7mol/L。制备的修饰电极重现性、稳定性良好。在模拟废水中采用该修饰电极对HQ和CC进行检测,结果满意。 相似文献
13.
Georgina M. S. Alves Júlia M. C. S. Magalhães Roma Tauler Helena M. V. M. Soares 《Electroanalysis》2013,25(8):1895-1906
Simultaneous anodic stripping voltammetric determination of Pb and Cd is restricted on gold electrodes as a result of the overlapping of these two peaks. This work describes the quantitative determination of a binary mixture system of Pb and Cd, at low concentration levels (up to 15.0 and 10.0 µg L?1 for Pb and Cd, respectively) by differential pulse anodic stripping voltammetry (DPASV; deposition time of 30 s), using a green electrode (vibrating gold microwire electrode) without purging in a chloride medium (0.5 M NaCl) under moderate acidic conditions (HCl 1.0 mM), assisted by chemometric tools. The application of multivariate curve resolution alternating least squares (MCR‐ALS) for the resolution and quantification of both metals is shown. The optimized MCR‐ALS models showed good prediction ability with concentration prediction errors of 12.4 and 11.4 % for Pb and Cd, respectively. The quantitative results obtained by MCR‐ALS were compared to those obtained with partial least squares (PLS) and classical least squares (CLS) regression methods. For both metals, PLS and MCR‐ALS results are comparable and superior to CLS. For Cd, as a result of the peak shift problem, the application of CLS was unsuitable. MCR‐ALS provides additional advantage compared to PLS since it estimates the pure response of the analytes signal. Finally, the built up multivariate calibration models, based either in MCR‐ALS or PLS regression, allowed to quantify concentrations of Pb and Cd in surface river water samples, with satisfactory results. 相似文献
14.
以商品化纳米氧化铜和羧化碳纳米管作为玻碳电极修饰材料,结合了两种材料的放大电信号和电催化性能,所构建的复合物修饰电极可区分性质相近的同分异构体邻苯二酚和对苯二酚的信号,同时可进一步放大两种酚的峰电流。 因此该基于纳米氧化铜和碳纳米管的电化学传感器可用于邻苯二酚和对苯二酚的同时检测。 采用循环伏安法对复合物中两种材料的比例、修饰量以及支持电解质pH进行了优化:纳米氧化铜和碳纳米管质量比为5∶1,修饰量为9 μL,pH=7.4的磷酸盐缓冲溶液被用作电解质溶液。 在优化的条件下,邻苯二酚和对苯二酚的微分脉冲伏安扫描峰电流与浓度在6.0×10-7~3.0×10-3 mol/L范围内均呈良好的线性关系,检出限(S/N=3)分别为1.0×10-7和1.6×10-7 mol/L。 该方法具有成本低、操作简便、快速的特点,对实际水样的加标回收率在94.6%~101.1%范围内,具有较好的实际应用前景。 相似文献
15.
制备了一种碳纳米管-石墨烯纳米片复合膜修饰金电极的用于同时测定邻苯二酚和对苯二酚电化学传感器。 并应用循环伏安法研究了邻苯二酚和对苯二酚在该电极上的电化学行为,邻苯二酚和对苯二酚的浓度检测采用差分脉冲伏安法,结果表明,碳纳米管-石墨烯纳米片复合膜极大的增强了邻苯二酚和对苯二酚的电催化活性。 并在0.5~6.0×10-4 mol/L浓度范围内与响应电流有良好的线性关系。邻苯二酚和对苯二酚的最低检测限分别是5.0×10-9和4.8×10-9 mol/L。 该电化学传感器能用于实际样品中的酚类化合物的检测。 相似文献
16.
利用电纺丝技术制得钯/碳纳米纤维复合材料(Pd/CNFs),并将其用于修饰玻碳电极Pd/CNF-GCE/CME.Pd/CNF-GCE/CME对邻苯二酚和对苯二酚的氧化还原反应具有较高的电催化活性,显著提高了二者电化学反应的可逆性.考察了支持电解质的酸度对邻苯二酚和对苯二酚电化学响应的影响,选用0.1 mol/L PBS(pH 8.0)作为支持电解质.用微分脉冲伏安(DPV)法对邻苯二酚和对苯二酚进行选择性检测:当混合溶液中存在50 μmol/L对苯二酚时,邻苯二酚的氧化峰电流与其浓度在1~90 μmol/L范围内呈线性关系,检出限为0.3 μmol/L(S/N=3);当存在50 μmol/L邻苯二酚时,对苯二酚的氧化峰电流与其浓度在2~100 μmol/L范围内呈线性关系,检出限为1.0 μmol/L.另外,此修饰电极具有较好的重现性和较强的抗干扰能力.将此修饰电极用于模拟水样中邻苯二酚和对苯二酚的测定,结果令人满意. 相似文献
17.
邻对苯二酚的合成方法 总被引:4,自引:1,他引:4
用自制的钛硅沸石TS-1为催化剂,对H2O2存在下苯酚直接羟基化合成邻、对苯二酚的反应条件,主要影响因素及机理进行了探讨,发现该民传统的合成方法相比,反应的选择性及转化率较高,工艺简单,成本低和污染少。 相似文献
18.
Here, Pd nanoparticles and poly(taurine) film was prepared on the glassy carbon electrode surface (Pd/Poly(TAU)/GCE) by the rapid electrochemical technique. The proposed composite surface was characterized by scanning electron microscopy(SEM), X‐ray photoelectron spectroscopy(XPS) and electrochemical impedance spectroscopy(EIS). Enhanced electron transfer ability and higher electroactive surface area were achieved at Pd/Poly(TAU)/GCE as compared to the bare GCE and polymer film electrode. The new and highly stable Pd/Poly(TAU)/GCE was employed for the individual and simultaneous determination of hydroquinone and catechol which were environmentally toxic. Under the optimized conditions, HQ and CC were individually determined by using the differantial pulse voltammetry in the linear ranges of 0.008–100 μM and 0.001–100 μM with the detection limits of (LOD) 2.1 nM and 0.68 nM, respectively. In case of simultaneous determination, LODs were found as 10 nM and 0.88 nM for HQ and CC, respectively. The content of both analytes in the real sample analysis was evaluated in the river water and tap water successfully. 相似文献