首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Low-field negative magnetization, of the order of −10−1 emu/g-Oe, from 4.2 K up to room temperature and higher (350 K), and coercive-field magnetization reversal are both present in Cr(3−x)FexX4 for X=S, Se, Te and x=0 to 3, and for Cr5Te8 and Cr7Te8. For Cr2FeSe4 the zero-field-cooled (ZFC) magnetization is negative for 5 Oe and below. To obtain a more detailed knowledge of the magnetic phases involved in the observed magnetization versus temperature M(T) curves, we obtained and studied neutron diffraction (n.d.) scans on the compound Cr2FeSe4, taken at 14 temperatures from 4.2 to 300 K. For this same n.d. sample, the temperature for magnetization reversal of value −3×10−4 emu/g-Oe is 80 K in 40 Oe applied field, then the reversal disappears for 65 Oe applied field. The complex magnetic interactions responsible for this reversal are revealed in the hysteresis curves.  相似文献   

2.
研究了Mn50–xCrxNi42Sn8 (x=0, 0.4, 0.6, 0.8)多晶样品的相变、磁性和交换偏置效应.结果表明,该系列合金在室温下都具有非调制的四方马氏体结构.马氏体逆相变温度随Cr含量增加而逐渐降低. 20 k Oe磁场下的M-T曲线表明,该系列合金的磁性比较弱.两相之间的磁性差最大为△M=7.61 emu/g.磁性的变化主要与Mn-Mn间距的变化以及Ni(A位)-Mn(D位)间杂化作用的强弱有关.在低温下,马氏体相的磁性随着Cr含量增加而增强.在500 Oe的外加磁场作用下,从室温冷却到5 K,在Mn50Ni42Sn8合金中观察到高达2624 Oe的交换偏置场.随着Cr含量的增加,交换偏置场逐渐减小.当Cr含量x=0.8时,随着冷却场的增加, 5 K时的交换偏置场先迅速增加然后逐渐减小.当冷却场为500 Oe时,交换偏置场最大.这主要归因于自旋玻璃态与反铁磁性区域的界面交换耦合作用的变化.  相似文献   

3.
The thermal decline in magnetization, M(T), at fixed magnetic field (H) under 'zero-field-cooled' (ZFC) and 'field-cooled' (FC) conditions, the time evolution of ZFC magnetization, M(ZFC)(t), at fixed temperature and field, M(H) hysteresis loops/isotherms, and ac susceptibility have been measured on polycrystalline Gd samples with average grain sizes of d = 12 and 18 nm. The irreversibility in magnetization, M(irr), occurring below a characteristic temperature that reduces with increasing H, is completely suppressed above a grain-size-dependent threshold field, H*. At low fields (H ≤ 100 Oe), M(irr)(T), like the coercive field, H(c)(T), exhibits a minimum at ~16 K and a broad peak at ~50 K before going to zero at T ? T(C) (Curie temperature). At fixed temperature (T < T(C)) and field (H ? H*), where M(irr) is finite, M(ZFC) has a logarithmic dependence on time. The magnetic viscosity (S) at H = 1 Oe and T ≤ 290 K is independent of the measurement time above ~2 ms but for t < 2 ms it is strongly time-dependent. S(T) peaks at T ? T(C) for H = 1 Oe. A magnetic field reduces the peak height and shifts the peak in S(T) to lower temperatures. All the above observations are put on a consistent theoretical footing within the framework of a model in which the intra-grain magnetizations overcome the energy barriers (brought about by the intra-grain and grain-boundary/interfacial magnetic anisotropies) by the thermal activation process. These field- and temperature-dependent energy barriers, that separate the high-energy metastable (ZFC) state from the stable minimum-energy (FC) state, are independent of time for t ? 2 ms and have a very broad distribution. We show that the shape anisotropy plays a decisive role in the magnetization reversal process, and that the magnetocrystalline and magnetostatic fluctuations, prevalent in the grain-boundary and interfacial regions, govern the approach-to-saturation of magnetization in nanocrystalline Gd.  相似文献   

4.
The magnetic field and temperature dependence of the low frequency magnetic response of antiferromagnetically coupled Fe/Cr(100) multilayers has been studied between +/-500 Oe, from 2 to 300 K. At T = 2 K the losses exhibit an unusually strong frequency dependence which can be described within a single relaxation time scheme. This relaxation time proves to be strongly field dependent. These phenomena are specific for epitaxial multilayers with large magnetoresistance. The behavior of the relaxation time at low temperatures might be related to some quantum tunneling processes.  相似文献   

5.
Chitosan/magnetite nanocomposite was synthesized induced by magnetic field via in situ hybridization in ambient condition. Results of XRD patterns and TEM micrographs indicated that magnetite particles with 10–20 nm were dispersed in chitosan homogeneously. An interesting result is that magnetite nanoparticles were assembled to form chain-like structures under the influence of the external magnetic field, which mimics the magnetite chains inside of magnetotatic bacteria. The saturated magnetization (Ms) of nano-magnetite in chitosan was 50.54 emu/g, which is as high as 54% of bulk magnetite. The remanence (Mr) and coercivity (Hc) were 4 emu/g and14.8 Oe, respectively, which indicated that magnetite nanoparticles were superparamagnetic. The key of route is that a pre-precipitated chitosan hydrogel membrane, used as chemical reactor, which controlled the precipitation of chitosan precipitation and in situ transformation of magnetite from the precursor simultaneously in the magnetic field environment.  相似文献   

6.
A study of the magnetic and structural properties of Zn1−xMxO powder (where x=0 or 0.01, and M=Mn, Fe or Co) produced by the proteic sol–gel process was undertaken. The sample crystal structure was analyzed by XRD and magnetic measurements were carried out in a SQUID magnetometer. Of the XRD analysis, all samples had hexagonal wurtzite crystal structure with P63mc space group, and no secondary phase was observed. It is observed of the M(H) measures at 2 K, that the Co- and Mn-doped ZnO displayed saturation magnetizations (Ms) of approximately 2 and 3.2 emu/g, respectively, and no remanence (Mr) was observed, indicating a superparamagnetic behavior in these samples. However, the Fe-doped sample showed a ferromagnetic behavior with Ms∼0.34 emu/g, Mr∼0.05 emu/g, and coercivity (Hc)∼1090 Oe. Already at room temperature, the M(H) measurements reveal a purely paramagnetic behavior for Mn- and Fe-doped ZnO, indicating that the Curie temperature (Tc) is below 300 K. However, a weak superparamagnetic behavior was observed in the Co-doped sample, indicating that Tc>300 K.  相似文献   

7.
Inelastic collision rates for ultracold 85Rb atoms in the F = 2, m(f) = -2 state have been measured as a function of magnetic field. At 250 gauss (G), the two- and three-body loss rates were measured to be K2 = (1.87+/-0.95+/-0.19)x10(-14) cm(3)/s and K3 = (4.24(+0. 70)(-0.29)+/-0.85)x10(-25) cm(6)/s, respectively. As the magnetic field is decreased from 250 G towards a Feshbach resonance at 155 G, the inelastic rates decrease to a minimum and then increase dramatically, peaking at the Feshbach resonance. Both two- and three-body losses are important, and individual contributions have been compared with theory.  相似文献   

8.
由于离子掺杂可有效改善ZnS薄膜的特性,故本研究以溶胶-凝胶法制备Ni_xZn_(1-x)S薄膜(x=0.00, 0.05, 0.10, 0.15),并利用XRD、PL光谱及磁性测试仪分析Ni掺杂对其磁性的影响.研究结果表明Ni掺杂量x为0.00、0.05、0.10及0.15时薄膜的饱和磁化强度随分别为6.59×10~(-6) emu/cm~3、4.61×10~(-6) emu/cm~3、3.88×10~(-6) emu/cm~3及3.52×10~(-6) emu/cm~3,即饱和磁化强度随x增加而减小. PL分析表明缺陷发光强度随x增加而减弱,能隙发光强度则随之增强,结合束缚极化子理论便知饱和磁化强度会随x增加而减小. XRD分析表示结晶品质随x增加而变好,说明薄膜中的缺陷数量会随x增加而减少,使得磁信号无法通过缺陷方式传导而导致其磁性减弱.  相似文献   

9.
采用固相反应法制备了YCrO3多晶样品,并首次制备了和Y0.9Pr0.1CrO3多晶样品,研究了其磁性质.在场冷模式下,外加磁场为100Oe时,Y0.9Pr0.1CrO3的磁化强度-温度关系曲线显示磁化反转的异常.在尼尔温度以下,随着温度的降低,磁化强度首先增加,在96K达到最大值,约0.230emu/g.之后磁化强度开始降低,在32K变为零值;并且在32K以下,磁化强度出现负值.这种现象解释为Pr离子的顺磁效应.  相似文献   

10.
The magnetic and structural properties of Fe1003−xCrx ultrafine particles with x = 5–20 have been studied as a function of particle size. Particles with a size in the range of 80–360 Å were prepared by gas evaporation under argon atmosphere. The particles with smaller diameter had a high coercivity at low temperatures and showed a stronger temperature dependence of coercivity. The x = 20 particles with a size 80 Å had a coercivity about 2100 Oe at 10 K with a superparamagnetic blocking temperature about 150 K. Mössbauer spectra showed the presence of Fe-Cr, -Fe and Fe-oxide components in the bigger particles, and Fe-Cr and Fe-oxides in the smaller particles. The coercivity at low temperatures increased with decreasing particle size and this was attributed to the higher percentage of Fe-oxide on the surface of the smaller particles. This interpretation was further supported by the temperature dependence of coercivity of Fe–Cr particles sandwiched between two Ag films.  相似文献   

11.
We have investigated the magnetic behavior of cobalt ferrite nanoparticles with a mean diameter of 7.2 nm. AC susceptibility of colloidal cobalt ferrite nanoparticles was measured as a function of temperature T from 2 to 300 K under zero external DC field for frequencies ranging from f=10 to 10,000 Hz. A prominent peak appears in both χ′ and χ″ as a function of T. The peak temperature T2 of χ″ depends on f following the Vogel–Fulcher law. The particles show superparamagnetic behavior at room temperature, with transition to a blocked state at TBm94 K in ZFC and 119 K in AC susceptibility measurements, respectively, which depends on the applied field. The saturation magnetization and the coercivity measured at 4.2 K are 27.3 emu/g and 14.7 kOe, respectively. The particle size distribution was determined by fitting a magnetization curve obtained at 295 K assuming a log-normal size distribution. The interparticle interactions are found to influence the energy barriers yielding an enhancement of the estimated magnetic anisotropy, K=6×106 erg/cm3. Mössbauer spectra obtained at higher temperatures show a gradual collapse of the magnetic hyperfine splitting typical for superparamagnetic relaxation. At 4.2 K, the Mössbauer spectrum was fitted with two magnetic subspectra with internal fields Hint of 490, 470 and 515 kOe, corresponding to Fe3+ ions in A and B sites.  相似文献   

12.
The magnetic structure of RFe6Ga6 intermetallic compounds with R = Y, Ho have been determined by neutron powder diffraction, 57Fe M?ssbauer spectroscopy, AC susceptibility, TGA (Thermo-Gravimetric Analysis) and magnetization measurements. Both compounds crystallize in the tetragonal ThMn12 structure (space group I4/mmm) with the magnetic structure of YFe6Ga6 consisting of a simple ferromagnetic alignment of Fe moments in the basal plane with a Curie temperature of 475(5) K. Gallium atoms are found to fully occupy the 8i site, with Fe and Ga atoms equally distributed over the 8j site, whilst Fe atoms fully occupy the 8f site. The average Fe moments are 1.68(10) and 1.46(10) at 15 and 293 K, respectively. The average room temperature Fe magnetic moments determined by neutron diffraction are in overall agreement with the average Fe moment deduced from M?ssbauer spectroscopy and bulk magnetization measurements on this compound. The magnetic anisotropy of the compound HoFe6Ga6 is also planar in the temperature range 6-290 K, with Ho magnetic moments of 9.28(20) and 2.50(20) at 6 K and 290 K, respectively, coupled anti-ferromagnetically to the Fe sublattice and a Curie temperature of 460(10) K. The magneto-crystalline anisotropies of both compounds are comparable at low temperatures. Received 8 March 2001 and Received in final form 18 June 2001  相似文献   

13.
Studies of magnetization, magnetoresistance, and magnetic oscillations in semiconductor-multiferroics Eu(1-x)Ce(x)Mn2O5 (x = 0.2-0.25) (ECMO) at temperatures ranging from 5 to 350 K in magnetic fields up to 6 T are presented. It is shown that phase separation and charge carrier self-organization in the crystals give rise to a layered superstructure perpendicular to the c axis. An effect of magnetic field cycling on the superstructure, magnetization, and magnetoresistance is demonstrated. X-ray diffraction studies of ECMO demonstrating the effect of magnetic field on the superstructure are presented. The de Haas-van Alphen magnetization oscillations in high magnetic fields and the temperature-induced magnetic oscillations in a fixed magnetic field are observed at low temperatures. Below 10 K the quantum corrections to magnetization due to the weak charge carrier localization in 2D superlattice layers occur. It is shown that at all the temperatures the Eu(1-x)Ce(x)Mn2O5 magnetic state is dictated by superparamagnetism of isolated ferromagnetic domains.  相似文献   

14.
We report an investigation of the magnetic core of the biomolecule ferritin by means of proton nuclear magnetic resonance (NMR) and relaxation, magnetic susceptibility and scanning electron microscope (SEM) measurements. SEM images show that the outer protein shell is taken out completely by an appropriate chemical treatment and indicate particle sizes ranging from 102 to 104 nm. Susceptibility measurements show a maximum in the zero-field-cooled data which is strongly field-dependent and can be ascribed to superparamagnetic behavior, whereas the hysteresis curve is different from normal ferritin. Proton NMR and spin-lattice relaxation data as a function of temperature at 4.7 T suggest the presence of an antiferromagnetic transition around 100 K.  相似文献   

15.
We report the first observation of the exclusive decays B-->D((*))K(*-), using 9.66 x 10(6) BB pairs collected at the Upsilon(4S) with the CLEO detector. We measure the following branching fractions: B(B--->D(0)K(*-)) = (6.1+/-1.6+/-1.7)x10(-4), B(B(0)-->D(+)K(*-)) = (3.7+/-1.5+/-1.0)x10(-4), B(B(0)-->D(*+)K(*-)) = (3.8+/-1.3+/-0.8)x10(-4), and B(B--->D(*0)K(*-)) = (7.7+/-2.2+/-2.6)x10(-4). The B-->D(*)K(*-) branching ratios are the averages of those corresponding to the 00 and 11 helicity states. The errors shown are statistical and systematic, respectively.  相似文献   

16.
An ultra-stable variable temperature accessory for EPR experiments with biological samples has been designed and tested. The accessory is comprised from a digitally controlled circulator bath that pumps fluid through high-efficiency aluminum radiators attached to an EPR resonator of a commercial X-band EPR spectrometer. Temperature stability of this new accessory after a 15 min re-equilibration is at least +/-0.007 K. For a standard 1-cm-long capillary sample arranged inside an EPR tube filled with silicon oil, the temperature variations do not exceed +/-0.033 K over the sample temperature range from 283 to 333 K. This new accessory has been tested by carrying out a comparative spin-labeling EPR and differential scanning calorimetry (DSC) study of the gel-to-liquid phase transition in multilamellar vesicles (MLV) composed of a synthetic phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC). We demonstrate that the gel-to-liquid phase transition temperatures of MLV DMPC measured by EPR and DSC agree within +/-0.02 K experimental error even though the sample for EPR study was labeled with 1 mol% of 5PC (1-palmitoyl-2-stearoyl-(5-doxyl)-sn-glycero-3 phosphocholine). Cooperative unit number measured by EPR, N=676+/-36, was almost 50% higher than that obtained from DSC (N=458+/-18). These high values of N indicate that (i) the lipid domains should include at least several spin-labeled lipid molecules and (ii) the spin-probe 5PC molecules are not excluded into domains that are different from the bulk lipid phase as was speculated earlier. Overall, our data provide DSC and EPR evidence that in studies of the gel-to-liquid phase transition, the effect of bilayer perturbation by spin-labeled lipids is negligible and therefore thermodynamic parameters of the phase transition can be accurately measured by spin-labeling EPR. This might serve as an indication when spin-labeled molecules with structures similar to those of lipids are introduced at low concentrations, they are easily accommodated by fluid phospholipid bilayers without significant losses of the lipid cooperativity.  相似文献   

17.
We present measurements of the branching fractions for the three-body decays B0 --> D(*)-/+K0pi+/- and their resonant submodes B0 --> D(*)-/+K*+/-using a sample of approximately 88 x 10(6) BB pairs collected by the BABAR detector at the SLAC PEP-II asymmetric energy storage ring. We measure: B(B0 --> D-/+K0pi+/-) = (4.9 +/- 0.7stat +/- 0.5syst) x 10(-4), B(B0 --> D*-/+K0pi+/-) = (3.0 +/- 0.7stat +/- 0.3syst) x 10(-4), B(B0 --> D-/+K*+/-) = (4.6 +/- 0.6stat +/- 0.5syst) x 10(-4), B(B0 --> D*-/+K*+/-) = (3.2 +/- 0.6stat +/- 0.3syst) x 10(-4). From these measurements we determine the fractions of resonant events to be f(B0 --> D-/+K*+/-) = 0.63 +/- 0.08stat +/- 0.04syst and f(B0 --> D*-/+K*+/-) = 0.72 +/- 0.14stat +/-0.05syst.  相似文献   

18.
对多晶Y3Fe3Fe5-xMnxO12(x=0.05和0.09),得到300K下的中子衍射曲线。发现当x=0.05时,Mn3+离子占据16a和24d位置的几率分别为0.72和0.28;当x=0.09时,Mn3+离子全部占据16a位置;还得到两种组分16a和24d位置各自的磁矩值。在外磁场(800—10KOe)下测量Y3Fe5-xMnxO12(x=0—0.11)的磁化曲线,温度范围是1.5—300K。得到饱和磁矩值;并利用趋近饱和定律确定1.5K下的磁晶各向异性常数k1值,发现|k1|值随含锰量增加而减小。 关键词:  相似文献   

19.
We report new measurements of the parity-violating asymmetry A(PV) in elastic scattering of 3 GeV electrons off hydrogen and 4He targets with approximately 6.0 degrees . The 4He result is A(PV)=(+6.40+/-0.23(stat)+/-0.12(syst))x10(-6). The hydrogen result is A(PV)=(-1.58+/-0.12(stat)+/-0.04(syst))x10(-6). These results significantly improve constraints on the electric and magnetic strange form factors G(E)(s) and G(M)(s). We extract G(E)(s)=0.002+/-0.014+/-0.007 at =0.077 GeV2, and G(E)(s)+0.09G(M)(s)=0.007+/-0.011+/-0.006 at =0.109 GeV2, providing new limits on the role of strange quarks in the nucleon charge and magnetization distributions.  相似文献   

20.
Superparamagnetic properties of self-aggregated cobalt nanoparticles in the perfluorinated sulfo-cation membrane (MF-4SK) prepared by ion-exchange method were investigated by transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometry at various temperatures. Our experimental results show that cobalt nanoparticles in MF-4SK exhibit superparamagnetic properties above the blocking temperature (TB), which varies from ∼80 to ∼300 K depending on the cobalt concentration at 100 Oe applied field. The average particle radius of 3.8 nm inferred from Langevin function fit for the concentration of 7.8×1019 cobalt atoms per 1 g of polymer film is in good agreement with TEM observation. This experimental evidence suggests that cobalt nanoparticles in the polymer film obey a single-domain theory. The results are discussed in the light of current theory for the superparamagnetic behavior of magnetic nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号