首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The procedure of deriving flame temperature and major species concentrations by fitting measured Raman spectra in hydrocarbon flames is described. The approach simplifies the calibration procedure to determine temperature and major species concentrations from the measured Raman spectra. The calculations of the Raman spectra are performed using data online positions and cross sections from the current literature. Utilizing all spectral information for deriving temperature and major species concentrations substantially increases accuracy, while interferences can easily be detected and filtered out of the measured spectrum. Temperatures from the separate Raman spectra of N2, H2O, O2, CO2 and CO are systematically compared with each other over the span of more than 1,700 K. The agreement between them is generally better than 100 K. The developed procedure also allows us to determine the mole fractions of the major species with absolute accuracy of ±10 %.  相似文献   

2.
Rotational coherent anti‐Stokes Raman spectroscopy (CARS) in fuel‐rich hydrocarbon flames, with a large content of hydrogen in the product gases (∼20%), has in previous work shown that evaluated temperatures are raised several tens of Kelvin by taking newly derived N2 H2 Raman line widths into account. To validate these results, in this work calibrated temperature measurements at around 300, 500 and 700 K were performed in a cell with binary gas mixtures of nitrogen and hydrogen. The temperature evaluation was made with respect to Raman line widths either from self‐broadened nitrogen only, N2 N2 [energy‐corrected‐sudden (ECS)], or by also taking nitrogen broadened by hydrogen, N2 H2 [Robert–Bonamy (RB)], Raman line widths into account. With increased amount of hydrogen in the cell at constant temperature, the evaluated CARS temperatures were clearly lowered with the use of Raman line widths from self‐broadened nitrogen only, and the case with inclusion of N2 H2 Raman line widths was more successful. The difference in evaluated temperatures between the two different sets increases approximately linearly, reaching 20 K (at T ∼ 300 K), 43 K (at T = 500 K) and 61 K (at T = 700 K) at the highest hydrogen concentration (90%). The results from this work further emphasize the importance of using adequate Raman line widths for accurate rotational CARS thermometry. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Spontaneous Raman spectroscopy has been employed for time-averaged, spatially-resolved measurements of temperature and species concentration in an axisymmetric, laminar hydrogen diffusion flame in quiescent air. Temperatures were obtained from vibrational Q-branch raman spectra of N2, O2, and H2 and the rotational Raman spectra of N2 and H2, and concentrations of H2, and N2 were determined. The results are compared to existing numerical nonequilibrium calculations for the conditions of this experiment. Significant differences between experimental and predicted temperature and concentration profiles are observed. In particular, the flame is larger in both diameter and length and the flame zone is thicker than predicted. Some possible sources of the discrepancies are discussed.  相似文献   

4.
We measured IV characteristics, electrical resistance, and Raman spectra in the temperature range from room temperature to above 600 K to obtain nanodevices. Measurements were taken on a single V2O5 nanowire deposited on a Si template, where two- and four-point metallic contacts were previously made using e-beam lithography. In both two- and four-point probe measurements, the IV curves were clearly linear and symmetrical with respect to both axes. Drastic reduction in electrical resistance and deviation from single valued activation energy with increasing temperature indicated phase transitions taking place in the nanowire. From temperature-dependent HR-Micro Raman measurements, reductions from V2O5 to VO2/V2O3 phases took place at a temperature as low as 500 K, when electrons were injected to the nanowire through electrical contacts.  相似文献   

5.
The suitability of local temperature measurements by cw Raman spectroscopy for the CH4/H2 CVD system has been established. The temperature profiles in a model reactor were derived from H2 pure rotational lines and from hot bands of thev 1 vibrational band of CH4. Experimental results are presented for substrate temperatures of 773 K and of 1473 K. High accuracy of measurement and excellent agreement with theoretical solutions for the temperature field within the reactor were found.  相似文献   

6.
A high‐resolution (∼0.1 cm−1) spectroscopic method based on the application of a Fabry–Pérot interferometer to the spectral analysis of the coherent anti‐Stokes Raman scattering (CARS) signal from an individual Raman transition was used to obtain single‐shot spectra of hydrogen Q‐branch transitions directly in the flame of a pulsed, high‐pressure H2/O2 combustion chamber. Simultaneously with the Fabry–Pérot pattern, a broadband CARS spectrum of the complete H2Q ‐branch structure was recorded in order to measure the temperature of the probe volume. During every cycle of the combustion chamber, a pressure pulse together with single‐shot CARS spectra, providing information on individual line shapes and medium temperature, was recorded. On the basis of the experimental data, the temperature dependences of lineshift coefficients for several Q‐branch lines of hydrogen molecules under collisions with water molecules were determined in the temperature range 2100 < T < 3500 K, and an empirical ‘fitting law’ for H2 H2O lineshift coefficients is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Raman spectra of 1,3‐disilabutane (SiH3CH2SiH2CH3) as a liquid were recorded at 293 K and as a solid at 78 K. In the Raman cryostat at 78 K an amorphous phase was first formed, giving a spectrum similar to that of the liquid. After annealing to 120 K, the sample crystallized and large changes occurred in the spectra since more than 20 bands present in the amorphous solid phase vanished. These spectral changes made it possible to assign Raman bands to the anti or gauche conformers with confidence. Additional Raman spectra were recorded of the liquid at 14 temperatures between 293 and 137 K. Some Raman bands changed their peak heights with temperature but were countered by changes in linewidths, and from three band pairs assigned to the anti and gauche conformers, the conformational enthalpy difference ΔconfH(gaucheanti) was found to be 0 ± 0.3 kJ mol−1 in the liquid. Infrared spectra were obtained in the vapor and in the liquid phases at ambient temperature and in the solid phases at 78 K in the range 4000–400 cm−1. The sample crystallized immediately when deposited on the CsI window at 78 K, and many bands present in the vapor and liquid disappeared. Additional infrared spectra in argon matrixes at 5 K were recorded before and after annealing to temperatures 20–34 K. Quantum chemical calculations were carried out at the HF, MP2 and B3LYP levels with a variety of basis sets. The HF and DFT calculations suggested the anti conformer as the more stable one by ca 1 kJ mol−1, while the MP2 results favored gauche by up to 0.4 kJ mol−1. The Complete Basis Set method CBS‐QB3 gave an energy difference of 0.1 kJ mol−1, with anti as the more stable one. Scaled force fields from B3LYP/cc‐pVQZ calculations gave vibrational wavenumbers and band intensities for the two conformers. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
The determination of accurate temperatures from CARS N2 Q-branch spectra in premixed flames is discussed for pressures up to 40 bar. The influence of collisional line narrowing in the CARS spectra is modelled by a MEG fitting law. It takes into account collisions of N2 with CO2 and H2O. The analysis of the CARS data showed that the non-resonant background has an increasing influence on temperature with increasing pressure. Little influence on the quality of the fit between theory and experiment was found. Since there is a danger of residual systematic temperature deviations, which cannot be identified from the quality of the fit, spontaneous rotational Raman scattering is employed as an independent measuring technique.  相似文献   

9.
Characteristics of microscale hydrogen diffusion flames produced from sub-millimeter diameter (d = 0.2 and 0.48 mm) tubes are investigated using non-intrusive UV Raman scattering coupled with LIPF technique. Simultaneous, temporally and spatially resolved point measurements of temperature, major species concentrations (O2, N2, H2O, and H2), and absolute hydroxyl radical concentration (OH) are made in the microflames for the first time. The probe volume is 0.02 × 0.04 × 0.04 mm3. In addition, photographs and 2-D OH imaging techniques are employed to illustrate the flame shapes and reaction zones. Several important features are identified from the detailed measurements of microflames. Qualitative 2-D OH imaging indicates that a spherical flame is formed with a radius of about 1 mm as the tube diameter is reduced to 0.2 mm. Raman/LIPF measurements show that the coupled effect of ambient air leakage and pre-heating enhanced thermal diffusion of H2 leads to lean-burn conditions for the flame. The calculated characteristic features and properties indicate that the buoyancy effect is minor while the flames are in the convection–diffusion controlled regime because of low Peclet number. Also, the effect of Peclet number on the flame shape is minor as the flame is in the convection–diffusion controlled regime. Comparisons between the predicted and measured data indicate that the trends of temperature, major species, and OH distributions are properly modeled. However, the code does not properly predict the air entrainment and pre-heating enhanced thermal-diffusive effects. Therefore, thermal diffusion for light species and different combustion models might need to be considered in the simulation of microflame structure.  相似文献   

10.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy has been used to investigate cryogenic liquid oxygen/gaseous methane (LOX/CH4) flames on a medium‐size test facility at a pressure of 0.24 MPa and mass flow of 0.025 kg/s. Single‐shot, broadband CARS spectra with simultaneous detection of the Q‐branches of hydrogen and water molecules were recorded with good signal‐to‐noise ratio. Temperature was deduced from the H2 and H2O CARS profiles. The spatial temperature distribution in a comparatively harsh environment has been measured successfully. The measurements took place in the windowed combustion chamber of the DLR M3 test facility, aiming to provide data for validation of rocket combustor modeling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
High-J rotational transitions in the ground vibrational state of molecular hydrogen and deuterium have been recorded using the FTS-Raman technique. Transitions above those recorded previously at room temperature were observed in diffusion flames burning H2 with air, and D2 with air. For H2 the v = 0-0 S(6) and S(7) transitions, which had not been observed previously, were recorded in the flame spectra. For D2 the flame spectra yielded measurements of the S(7) through S(12) lines for the first time. By combining flame and room-temperature Raman and infrared measurements it has been possible to improve H2 ground state rotation constants to fifth order. For D2, the combination of flame and room-temperature Raman measurements required an extension to fifth-order constants, as compared with the third-order fit which was adequate for the room-temperature data alone. Our improved line positions can be applied to transitions observed in the Orion Molecular Cloud.  相似文献   

12.
In this paper, we present a detailed experimental study of turbulence chemistry interactions in the “DLR_B” turbulent jet diffusion flame. The flame operates on mixtures of CH4, H2, and N2 in the fuel stream at Re = 22,800 and is a target flame within the TNF workshop. Extinction and re-ignition events can be tracked in real time and related to the underlying flow field phenomena and temperature fields. Time resolved measurements of OH radical concentration fields are performed in combination with temperature and velocity field measurements. For this purpose, we combined high repetition rate (33 kHz) PLIF imaging with stereoscopic PIV and double pulse Rayleigh imaging techniques. Comparisons are made with results from multi-scalar Raman/Rayleigh/LIF point measurements that reveal the thermochemical state of the flame. The large deviations from equilibrium observed on resulting OH/temperature joint pdfs could be related to strain rate and Damköhler number variations caused by turbulent flow structures leading to frequent extinctions. The 2D measurement series uniquely reveal the underlying mechanism that can lead to such events. Finally, comparisons are made to strained laminar flame calculations, which are generally found to be in good agreement with the measured data.  相似文献   

13.
Temperature and concentration measurements by Coherent Anti-Stokes Raman Scattering (CARS) of molecular nitrogen, oxygen and methane were carried out. A comparison of corrected thermocouple and CARS temperature measurements in a high-temperature furnace up to 2000 K is presented. The temperature dependent CARS spectra of N2 and O2 are evaluated by a simulation program. Agreement between CARS and thermocouple temperatures is obtained within 40 K for N2 and 80 K for O2. Good agreement is found between measurements and calculations of the decrease of CARS intensity with temperature. Various quick-fit methods for N2-and O2-temperature measurements from temperature sensitive spectral parameters were tested. Temperature dependent CARS spectra of thev 1-fundamental of methane are recorded and the methane CARS intensity as function of temperature is measured.  相似文献   

14.
We present a dual-pump coherent anti-Stokes Raman scattering (CARS) instrument, which has been constructed for the probing of temperature fluctuations in turbulent pool fires of meter-scale. The measurements were performed at the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility at Sandia National Laboratories, which provides a canonical fire plume in quiescent wind conditions, with well-characterized boundary conditions and access for modern laser-diagnostic probes. The details of the dual-pump CARS experimental facility for the fire-science application are presented, and single-laser-shot CARS spectra containing information from in-fire N2, O2, H2, and CO2 are provided. Single-shot temperatures are obtained from spectral fitting of the Raman Q-branch signature of N2, from which histograms that estimate the pdf of the enthalpy-averaged temperature fluctuations at the center of the fire plume are presented. Results from two different sooting fire experiments reveal excellent test-to-test repeatability of the fire plume provided by FLAME, as well as the CARS-measured temperatures. The accuracy and precision of the CARS temperatures is assessed from measurements in furnace-heated air, where the temperature can be accurately determined by a thermocouple. At temperatures in excess of 500 K, the furnace results show that the CARS measurements are accurate to within 2-3% and precise to within ±3-5% of the measured absolute temperature.  相似文献   

15.
Nanosecond scale discharges are considered an interesting way for assisting combustion by enhancing either flame stabilization or ignition. Better understanding of energy deposit and radical species production processes is still required under pressure conditions normally encountered in combustion. The purpose of the present paper is to show that spontaneous Raman scattering, seldom used to investigate nanosecond pulsed discharges, is a useful measurement method for investigating the energy deposit of these discharges. The advantage of spontaneous Raman scattering is described by analyzing N2 and O2 spectra during the post-discharge of a filamentary nanosecond air discharge under atmospheric pressure, using phase-locked average spectra. The main advantages of spontaneous Raman scattering measurements are that they allow line-wise probing of different species with the same experimental setup and the determination of vibrational distribution by comparison with theoretical modeling over a wide range of vibrational levels (from v=0 to v=20 for N2). The model proposed takes into account the high level of vibrational excitation and the strong non-equilibrium observed, allowing the characterization of the vibrational relaxation over the complete post-discharge duration. Although the rotational structure is not resolved, the rotational temperature and thus translational temperature are determined with a moderate uncertainty for T above 500 K.  相似文献   

16.
The feasibility of Raman spectroscopy and temperature measurements in gases by Coherent Anti-Stokes Scattering is discussed and demonstrated experimentally. Results are presented for H2 gas at room temperature and also for H2 liberated by pyrolysis in a Bunsen flame.  相似文献   

17.
Room‐temperature polarized Raman spectra of a single crystal and IR spectra of a polycrystalline sample were measured for [N(C2H5)4]2MnCl4 and the assignment of the observed bands to the respective modes has been proposed. Temperature‐dependent Raman and far‐IR studies were also performed for the polycrystalline sample in order to obtain information on changes occurring in this material as a result of phase transitions at T1 = 227 K and at T2 = 199 K. These studies revealed that the higher‐temperature ferroelastic phase transition is associated with significant modification of vibrational properties due to ordering of tetraethylammonium groups. The lower‐temperature phase transition does not lead to any clear changes in the spectra. However, our results suggest that disorder of MnCl42− ions decreases with decreasing temperature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P21/b(C2h5) with four molecules per unit cell. In a Fourier‐transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature‐dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
To establish H2 CARS thermometry at high pressure, accumulated H2 Q-branch CARS spectra were recorded in the exhaust of a fuel-rich CH4/air flame at pressures between 5 and 40 bar. Temperatures were deduced by fitting theoretical spectra to experimental data points. The Energy-Corrected Sudden (ECS) scaling law was employed to set up an empirical model for the calculation of H2 linewidths in high-pressure hydrocarbon flames with H2 as a minority species. Experimental H2 CARS spectra could be simulated very accurately with this model. The evaluated temperatures agreed well with reference temperatures obtained by spontaneous rotational Raman scattering of N2.  相似文献   

20.
A combined Raman elastic-backscatter lidar has been developed. A XeCl excimer laser is used as the radiation source. Inelastic Raman backscatter signals are spectrally separated from the elastic signal with a filter or grating polychromator. Raman channels can be chosen to register signals from CO2, O2, N2, and H2O. Algorithms for the calculation of the water-vapor mixing ratio from the Raman signals and the particle extinction and backscatter coefficients from both elastic and inelastic backscatter signals are given. Nighttime measurements of the vertical humidity distribution up to the tropopause and of particle extinction, backscatter, and lidar ratio profiles in the boundary layer, in high-altitude water and ice clouds, and in the stratospheric aerosol layer are presented. Daytime boundary-layer measurements of moisture and particle extinction are made possible by the improved daylight suppression of the grating polychromator. Test measurements of the CO2 mixing ratio indicate the problems for the Raman lidar technique in monitoring other trace gases than water vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号