首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The luminescent properties of an Eu2+-activated hexagonal aluminate, BaMgAl10O17 (BAM), were studied under 147- and 254-nm excitations. The BAM samples were thermally treated by baking and then irradiated in vacuum ultraviolet (VUV) rays. The results show that the emission efficiency of Eu2+ in BAM under 147-nm excitation degraded seriously after baking or VUV-irradiating treatments, while no significant degradation was observed under 254-nm excitation. The degree of degradation depended on the excitation wavelength, and the absorption edge of the BAM host was suggested to be close to 175 nm (7.2 eV). The differences between the thermal-induced and the VUV-irradiation-induced degradations, and their mechanisms are discussed for the color plasma display applications.  相似文献   

2.
Photoluminescence excitation to intermediate atomic levels of rare earth activator ion (praseodymium) situated intragap in alkaline earth aluminate (AEA) SrAl2O4 has been tailored. This lead to blue excitation (2.7 eV) of large band gap AEA possible. Photoluminescence (PL) emission in the visible region extends from 525 to 650 nm corresponding to transition from 3P0 and 1D2 excited states to different 3HJ and 3FJ states of Pr3+, broadened by crystal field effect of SrAl2O4. Thus SrAl2O4:Pr3+ promise to be a good candidate for solid state lighting in conjunction with blue LED.  相似文献   

3.
The present paper reports that TL glow curve and kinetic parameter of Eu3+ doped SrY2O4 phosphor irradiated by beta source. Sample was prepared by solid state preparation method. Sample was characterized by XRD analysis and particle size was calculated by Debye–Scherrer formula. The sample was irradiated with Sr-90 beta source giving a dose of 10 Gy and the heating rate used for TL measurements are 6.7 °C/s. The samples display good TL peaks at 106 °C, 225 °C and 382 °C. The corresponding kinetic parameters are calculated. The photoluminescence excitation spectrum at 247 and 364 nm monitored with 400 nm excitation and the corresponding emission peaks at 590, 612 and 624 nm are reported.  相似文献   

4.
A comparative study of the luminescent properties of Y2O3:Eu3+ phosphor powders and thin films sputtered from targets prepared from combustion synthesized powders is reported. Thin films of (Y0.96Eu0.04)2O3 were deposited on silicon substrates. Films deposited at 600 °C had both monoclinic and cubic phases of Y2O3, which developed to an oriented cubic phase after annealing. Films and powders showed a linear dependence of the intensity of the 5D77F2 (611 nm) transition with temperature in the range 26-660 °C with an average rate of change of 1.8×10−4 °C−1. The rate of change appears to be dependent on the Eu3+ concentration. This work shows that these thin films can be used as thermographic phosphors for remote temperature measurements.  相似文献   

5.
采用自蔓延燃烧法制备了不同镨掺杂浓度的12CaO·7Al2O3:Pr3+(C12A7:Pr3+) X射线影像存储荧光粉。在232 nm激发下,发现Pr3+掺杂摩尔分数为0.3%的荧光粉位于486 nm的蓝光发射峰呈现最大的发光强度。对C12A7:0.3% Pr3+样品进行真空热处理后,C12A7笼中的O2-基团数量减少,同时类F+色心的空笼子的数量增多,导致陷阱数目增加和光激励发光强度增大。热释发光实验表明:C12A7:0.3% Pr3+样品中存在两个深陷阱,陷阱深度分别约为0.69 eV和0.80 eV;经过真空热处理后的C12A7:0.3% Pr3+荧光粉,陷阱深度变深,陷阱数目增多,光存储性能变好。当吸收的X射线剂量为5.2 Gy时,可以实现分辨率较高的X射线成像。实验结果表明,镨掺杂C12A7荧光粉在计算机X射线摄影领域有潜在的应用前景。  相似文献   

6.
Current radiation dosimetry methods involve the release of trapped charge carriers in the form of electrons-holes pairs generated by irradiation exposure of the dosimetric materials. Thermal and optical stimulations of the irradiated material freed the trapped charges that eventually recombine with interband centers producing the emission of light. The integrated intensity of the emitted light is proportional to the radiation dose exposure. In this work, we present an UV radiation dosimetry technique based on the characteristic persistence luminescence (PLUM) 4f65d1→4f7 electronic transition of Eu2+ ions in SrAl2O4:Eu2+, Dy3+. The dose assessment is carried out by measuring the PLUM signal integrated during a certain time. The PLUM performance of SrAl2O4:Eu2+, Dy3+ phosphor exhibited a linear behavior for the first 50 s of UV irradiation. For higher UV time exposure the behavior is sublinear with no apparent saturation during a 10 min period. The PLUM dosimetry response was performed at 400 nm that corresponds to the main band component of the PLUM excitation spectrum in the 250-500 nm range. The main advantage of a dosimeter device based on the PLUM of SrAl2O4:Eu2+, Dy3+ is that neither thermal nor optical stimulation is required, avoiding the need of cumbersome electronic photo/thermal stimulation equipment. Due to the highly efficient 250-500 nm PLUM response of SrAl2O4:Eu2+, Dy3+, it could have potential application as UV radiation dosimeter in the UV range of grate human health concerns caused by UV solar radiation.  相似文献   

7.
C. Li 《Applied Surface Science》2010,256(22):6801-6804
Fe2O3/Al2O3 catalysts were prepared by solid state reaction method using α-Fe2O3 and γ-Al2O3 nano powders. The microstructure and surface properties of the catalyst were studied using positron lifetime and coincidence Doppler broadening annihilation radiation measurements. The positron lifetime spectrum shows four components. The two long lifetimes τ3 and τ4 are attributed to positronium annihilation in two types of pores distributed inside Al2O3 grain and between the grains, respectively. With increasing Fe2O3 content from 3 wt% to 40 wt%, the lifetime τ3 keeps nearly unchanged, while the longest lifetime τ4 shows decrease from 96 ns to 64 ns. Its intensity decreases drastically from 24% to less than 8%. The Doppler broadening S parameter shows also a continuous decrease. Further analysis of the Doppler broadening spectra reveals a decrease in the p-Ps intensity with increasing Fe2O3 content, which rules out the possibility of spin-conversion of positronium. Therefore the decrease of τ4 is most probably due to the chemical quenching reaction of positronium with Fe ions on the surface of the large pores.  相似文献   

8.
We report, for the first time on luminescence from a Er3+ doped SrAl2O4 phosphor. Effects of Eu3+ doping were also studied. The influence of rare-earth doping in crystal structure and its optical properties were analysed by means of X-ray diffraction (XRD), Raman scattering, optical absorption, excitation and emission (PL) spectroscopy, thermally stimulated luminescence (TSL) and scanning electron microscope (SEM). Luminescence spectra and luminescence decay curves for Er3+ transitions in the near infrared region were recorded. The PL maximum for Eu doped SrAl2O4 is obtained at 620 nm and corresponds to the orange region of the spectrum. Diffraction patterns reveal a dominant phase, characteristic of the monoclinic SrAl2O4 compound and the presence of dopants has no effect on the basic crystal structure of SrAl2O4. The shapes of the glow curves are different for each dopant irradiated with either a 90Sr-90Y beta source, or UV light at 311 nm, and in detail the TL signals differ somewhat between Er and Eu dopants.  相似文献   

9.
赵旺  平兆艳  郑庆华  周薇薇 《物理学报》2018,67(24):247801-247801
采用高温固相法成功合成出双钙钛矿结构SrGd_(1-x)LiTeO_6:xEu~(3+)(x=0.1-1.0)红色荧光粉,并采用X-射线衍射、漫反射光谱、光致发光光谱、电致发光光谱等测试手段对粉体的结构、光致发光特性以及发光二极管器件的光色电特性进行了系统研究.激发光谱、发射光谱和荧光衰减曲线测试结果表明Eu~(3+)的最佳掺杂浓度为x=0.6,更大的掺杂量会引起浓度猝灭.基于van Uitert浓度猝灭公式,提出一种更准确的表达形式用于拟合、分析能量传递类型,揭示出电偶极-电偶极作用导致浓度猝灭.Judd-Ofelt理论计算得出较高的跃迁强度参数和量子效率,说明高度畸变的非心C_1晶体场促使高效的超灵敏跃迁红光发射.在423 K时积分发光强度达到室温时的85.2%,热激活能经计算为0.2941 eV.基于此样品的发光二极管能够发出明亮的红光.综上所述,该类荧光粉表现出良好的发光效率、色纯度以及发光热稳定性,是一种潜在的近紫外激发白光发光二极管用红色荧光粉.  相似文献   

10.
Nanocrystalline powders of Lu2O3:Eu with the activator content varying in the range of 0.2–10% were prepared through a combustion technique. The powders were only slightly agglomerated and the size of crystallites were about 30 nm. Some of the powders were co-doped with Mg, Ca, Sr, Ba, La of various concentrations. Such powders were cold-pressed and sintered at 1750°C for 5 h in vacuum. X-ray-excited luminescence spectra of both the powders and the sintered ceramics were recorded and the efficiency was compared to the commercial standard Gd2O2S:Pr,Ce,F X-ray phosphor. It was found that the nanocrystalline powders of Lu2O3:Eu,Ca emit photons four-times less than the commercial micron-sized Gd2O2S:Pr,Ce,F powder. In the case of sintered materials the emission efficiency from our Lu2O3:Eu5%, Ca was roughly equal to the efficiency of the commercial-sintered Gd2O2S:Pr,Ce,F. The co-doping ions were shown to have various effects on the transparency of the sintered Lu2O3:Eu. Mg hindered the sintering process producing completely opaque pellets. Other ions facilitated the sintering course and the best results were obtained by co-doping the samples with 0.5% of Ba. Sr and La also significantly stimulated the sintering and the final pellets were only slightly cloudy.  相似文献   

11.
A novel 6SrO·6BaO·7Al2O3 (S6B6A7) thin film has been deposited onto soda lime float glass via sol-gel dip coating technique. The optical and electrical properties of S6B6A7 films annealed in air and H2 atmosphere have been investigated. The structural and compositional properties of the S6B6A7 thin films have been investigated using Fourier transferred infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The S6B6A7 films prepared using 5 (wt.%) sol and annealed at 450 °C in air and H2 atmosphere exhibit an average transmittance of over ∼91% in wide visible range. The electrical properties of the S6B6A7 films affect film thickness as revealed by sheet resistance measurements. The sheet resistance of the 150 nm S6B6A7 films was 67.85 and 6.06 kilo ohms per square for air and H2 annealed, respectively.  相似文献   

12.
Y2O3:Eu3+, Tb3+ phosphors with white emission are prepared with different doping concentration of Eu3+ and Tb3+ ions and synthesizing temperatures from 750 to 950 °C by the co-precipitation method. The resulted phosphors were characterized by X-ray diffraction (XRD) and photoluminescence (PL) spectroscopy. The results of XRD indicate that the crystallinity of the synthesized samples increases with enhancing the firing temperature. The photoluminescence spectra indicate the Eu3+ and Tb3+ co-doped Y2O3 phosphors show five main emission peaks: three at 590, 611 and 629 nm originate from Eu3+ and two at 481 and 541 nm originate from Tb3+, under excitation of 250-320 nm irradition. The white light luminescence color could be changed by varying the excitation wavelength. Different concentrations of Eu3+ and Tb3+ ions were induced into the Y2O3 lattice and the energy transfer from Tb3+→Eu3+ ions in these phosphors was found. The Commission International de l’Eclairage (CIE) chromaticity shows that the Y2O3:Eu3+, Tb3+ phosphors can obtain an intense white emission.  相似文献   

13.
A novel red-emitting phosphor CaSrAl2SiO7:Eu3+ was firstly synthesized through the high temperature solid state reaction at 1300 °C. The structure, diffuse reflection spectra, photoluminescence spectra, color-coordinate parameters and quantum efficiencies (QE) of phosphors were investigated. The obtained CaSrAl2SiO7:Eu3+ phosphors have the same structure with that of the Ca2Al2SiO7 and Sr2Al2SiO7 phosphor, which have the melilite structure. Optical properties were studied as a function of Eu3+ concentration x, when x>0.14, the intensity of absorption of the f–f transitions of Eu3+ at 393 nm is stronger than that of the broad charge transfer transition band (CTB) around 254 nm, and which matches well with the output lights of NUV–LEDs, whereas, the concentration of Eu3+x≤0.14, the absorption of 393 nm is weaker than that of CTB. The underlying reason of Eu3+ concentration on their luminescent properties was investigated and discussed in detail. As a result, comparing with the commercial red phosphor Y2O2S:Eu3+, the CaSrAl2SiO7:xEu3+ (x>0.14) phosphor exhibited excellent color purity and much higher brightness and could be considered as promising red phosphors for NUV–LEDs.  相似文献   

14.
This paper reports the photoluminescence and afterglow behavior of Eu2+ and Eu3+ in Sr3Al2O6 matrix co-doped with Dy3+. The samples containing Eu2+ and Eu3+ were prepared via solid-state reaction. X-ray diffraction (XRD), photo luminescent spectroscope (PLS) and thermal luminescent spectroscope (TLS) were employed to characterize the phosphors. The comparison between the emission spectra revealed that Sr3Al2O6 phosphors doped with Eu2+, Dy3+ and Eu3+, Dy3+ showed different photoluminescence. The phosphor doped with Eu3+, Dy3+ showed an intrinsic f-f transition generated from Eu3+, with two significant emissions at 591 and 610 nm. However, the phosphor doped with Eu2+, Dy3+ revealed a broad d-f emission centering around 512 nm. After the UV source was turned off, Eu2+, Dy3+ activated Sr3Al2O6 phosphor showed excellent afterglow while Eu3+, Dy3+ activated phosphor almost showed no afterglow. Thermal simulated luminescence study indicated that the persistent afterglow of Sr3Al2O6: Eu2+, Dy3+ phosphor was generated by suitable electron traps formed by the co-doped rare-earth ions (Dy3+) within the host.  相似文献   

15.
A novel 6SrO·6BaO·7Al2O3 (S6B6A7) thin film deposited onto soda lime float glass via sol-gel dip coating technique is reported. The morphological and compositional properties of the S6B6A7 thin films have been investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) revealing that the films were composed of S6B6A7 nanoparticles. The optical properties of the S6B6A7 films are affected by sol concentration, film thickness and annealing temperature as revealed by UV-vis transmittance. The transparency of S6B6A7 films improved on increasing annealing temperature up to 450 °C in air. The S6B6A7 films prepared using 2, 5, and 8 (wt.%) sols and annealed at 450 °C exhibit an average transmittance of over ∼91% in wide visible range.  相似文献   

16.
A series of Dy3+-doped calcium magnesium silicate phosphors: CaMgSi2O6:Dy3+, Ca2MgSi2O7:Dy3+, and Ca3MgSi2O8:Dy3+ with white long-lasting afterglow were prepared and investigated. The characteristic intra-configurational 4f emissions of Dy3+ were observed in the emission spectra as well as the afterglow spectra under ultraviolet excitation. The combination of the 480 nm blue emission corresponding to the 4F9/26H15/2 transition and the 575 nm yellow emission corresponding to the 4F9/26H13/2 transition yielded white-light emission. The white-coloured afterglow emission can last more than 1 h for most of the samples under study. The concentration dependence of the ratio of the yellow emission intensity with blue emission intensity was also examined and found to be varied for the different hosts. The thermoluminescence spectra above room temperature are employed for the discussion of the origin of the traps and the mechanism of the persistent luminescence.  相似文献   

17.
Alumina (Al2O3) powders doped with europium trivalent (Eu3+) were prepared by a low-temperature (∼280 °C) combustion synthesis technique. When the powder was heat treated at 1200 °C for 2 h in the presence of flowing ammonia (NH3), α-Al2O3 crystalline ceramic powders was obtained. The analysis of the luminescence showed that Eu3+ was reduced to europium divalent (Eu2+) after the heat-treatment process. Under ultraviolet (UV) lamp excitation (λ=254 nm) these powders containing sub-microcrystalline structures present bright red (Al2O3:Eu3+) and green (Al2O3:Eu2+) luminescence indicating that this material is a potential candidate for applications in phosphor technology.  相似文献   

18.
The UV excited and persistent luminescence properties as well as thermoluminescence (TL) of Eu2+ doped strontium aluminates, SrAl2O4:Eu2+ were studied at different temperatures. Two luminescence bands peaking at 445 and 520 nm were observed at 20 K but only the latter at 295 K. Both Sr-sites in the lattice are thus occupied by Eu2+ but at room temperature efficient energy transfer occurs between the two sites. The UV excited and persistent luminescence spectra were similar at 295 K but the excitation spectra were different. Thus the luminescent centre is the same in both phenomena but excitation processes are different. Two TL peaks were observed between 50 and 250 °C in the glow curve. Multiple traps were, however, observed by preheating and initial rise methods. With longer delay times only the high temperature TL peak was observed. The persistent luminescence is mainly due to slow fading of the low temperature TL peak but the step-wise feeding process from high temperature traps is also probable.  相似文献   

19.
Newly synthesized reference MgLaLiSi2O7 and red luminescent Eu3+:MgLaLiSi2O7 powder phosphors have been successfully developed by a solid-state reaction method to analyze their emission and structural properties from the measurement of their XRD, SEM, FTIR and PL spectra. Emission spectra of Eu3+ powder phosphors have shown strong red emissions at 613 nm (5D07F2). These phosphors have also shown bright red emissions under a UV source. Based on the red emission performance, the Eu3+ concentration has been optimized to be at 0.3 mol%.  相似文献   

20.
Powder samples of barium aluminate doped with Mn2+ and Ce3+ were prepared by solid-state reaction method and their photoluminescence and thermoluminescence properties were studied. Substitution of Ca/Sr in place of Ba resulted in enhanced emission from Ce3+ ions without changing the spectral profile. Cerium efficiently sensitized the manganese luminescence in barium aluminate. Photoluminescence and thermo luminescence observations have indicated the presence of Vk3+ defects in undoped barium aluminate. However, Barium aluminate (either undoped or doped with manganese) did not exhibit long afterglow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号