首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peng Ju 《Journal of luminescence》2011,131(8):1724-1730
The interaction between flower-like CdSe nanostructure particles (CdSe NP) and bovine serum albumin (BSA) was investigated from a spectroscopic angle under simulative physiological conditions. Under pH 7.4, CdSe NP could effectively quench the intrinsic fluorescence of BSA via static quenching. The binding constant (KA) was 6.38, 3.27, and 1.90×104 M−1 at 298, 304, and 310 K, respectively and the number of binding sites was 1.20. According to the Van't Hoff equation, the thermodynamic parameters (ΔH°=−77.48 kJ mol−1, ΔS°=−168.17 J mol−1 K−1) indicated that hydrogen bonds and van der Waals forces played a major role in stabilizing the BSA−CdSe complex. Besides, UV-vis and circular dichroism (CD) results showed that the addition of CdSe NP changed the secondary structure of BSA and led to a decrease in α-helix. These results suggested that BSA underwent substantial conformational changes induced by flower-like CdSe nanostructure particles.  相似文献   

2.
The fluorescence quenching of 9-Aminoacridine by certain estrogens and flavonoids in water was studied using absorption, steady state and time-resolved measurements. The bimolecular quenching rate constants for the chosen estrogens and flavonoids were found to be in the range of 3.2-9.2×1011 and 0.36-14.46×1011 M−1s−1, respectively. From lifetime measurement we observed that the quenching was mainly due to static mechanism through ground state complex formation. The binding constant (K) and the number of binding sites (n) were calculated based on the fluorescence quenching data. The free energy change (ΔGet) for electron transfer process was calculated by Rehm-Weller equation.  相似文献   

3.
M. Ghali 《Journal of luminescence》2010,130(7):1254-20848
The author reports on a strong fluorescence quenching of a model transport protein, bovine serum albumin BSA, when bioconjugated with CdS quantum dots QDs. The 4.4 nm size CdS QDs were synthesized using wet chemistry method and were characterized using UV-vis spectroscopy, scanning electron microscopy SEM and X-ray diffraction XRD techniques. It was found that the BSA fluorescence quenching increases linearly with increasing the CdS QDs concentrations in the range of 3×10−7-2.0×10−6 mol L−1. This quenching is explained in terms of Stern-Volmer equation and is ascribed to static quenching with quenching constant 1.321×104 L mol−1 at 300 K.  相似文献   

4.
In this paper, the interaction between barbital and bovine serum albumin (BSA) was investigated by the method of fluorescence spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by barbital was the result of the formation of BSA-barbital complex, and the effective quenching constants (Ka) were 1.468×104, 1.445×104 and 1.403×104 M−1 at 297, 303 and 310 K, respectively. The thermodynamic parameters enthalpy change (ΔH) and entropy change (ΔS) for the reaction were calculated to be −2.679 kJ mol−1 and 70.76 J mol−1 K−1, respectively, according to the van’t Hoff equation. The results indicated that hydrophobic and electrostatic interactions were the dominant intermolecular force in stabilizing the complex. The results of synchronous fluorescence spectra showed that binding of barbital with BSA can induce conformational changes in BSA. In addition, the effects of Cu2+ and Zn2+ on the constants of BSA-barbital complex were also discussed.  相似文献   

5.
The spin Hamiltonian parameters (g factors, hyperfine structure constants and superhyperfine parameters) for the tetragonal [Rh(CN)4Cl2]4− complex in KCl are theoretically investigated from the perturbation formulas of these parameters for a 4d7 ion in a tetragonally elongated octahedron. This center can be assigned to the substitutional Rh2+ on host K+ site reduced from Rh3+ by capturing one electron during the electron irradiation, associated with the two axial ligands CN replaced by two Cl. The crystal-fields of the two axial Cl are weaker than those of the four planar CN, yielding the tetragonal elongation distortion. This system belongs to the case of low spin (S = 1/2) under strong crystal-fields, different from that of high spin (S = 3/2) under weak and intermediate crystal-fields (e.g., 3d7 ions such as Fe+ and Co2+ in conventional chlorides). The calculated spin Hamiltonian parameters show good agreement with the experimental data. The above [Rh(CN)4Cl2]4− complex due to the different axial and perpendicular ligands is unlike the tetragonally elongated [RhCl6]4− complex due to the Jahn–Teller effect in the similar NaCl:Rh2+ crystals.  相似文献   

6.
The interaction between vitexin and human serum albumin (HSA) has been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of vitexin to HSA. The binding constants (Ka) between vitexin and HSA were obtained according to the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be -57.29 kJ mol−1 and -99.01 J mol−1 K−1 via the van't Hoff equation, which indicated that the interaction of vitexin with HSA was driven mainly by hydrogen bond and van der Waals forces. Fluorescence anisotropy data showed that warfarin and vitexin shared a common binding site I corresponding to the subdomain IIA of HSA. The binding distance (r) between the donor (HSA) and the acceptor (vitexin) was 4.16 nm based on the Förster theory of non-radioactive energy transfer. In addition, the results of synchronous fluorescence, CD and FT-IR spectra demonstrated that the microenvironment and the secondary structure of HSA were changed in the presence of vitexin.  相似文献   

7.
The interaction between the antimicrobial drug sulfamethazine (STM) and bovine serum albumin (BSA) has been studied using steady state and synchronous fluorescence spectroscopy. Fluorescence emission data revealed that BSA (2×10−6 M) fluorescence was statically quenched by STM at various concentrations, which implies that STM-BSA complex has been formed. The fluorescence emission data was analyzed via applying the Stern-Volmer analysis in combination with thermodynamic investigation, where obtained results revealed that quenching is static with quenching constants of 2.371, 1.658, and 0.916×105 M−1 at 298, 304, and 310 K, respectively. Binding constants and number of binding sites at different temperatures were also determined by applying the Scatchard method, which in turn were used to construct the van't Hoff plot in order to estimate the enthalpy (ΔH) and entropy changes (ΔS) for the complexation process. An average of 1.00±0.17 was estimated for the number of sites of BSA, which indicated that STM binds to BSA with stoichiometric ratio of 1:1. The values that were estimated from the van't Hoff plot for ΔH and (ΔS) were −36.8 kJ mol−1 and −14.9 J mol−1 K−1, respectively, which indicate that the STM-BSA complex is stabilized with hydrogen bonds and van der Waals interactions. Synchronous fluorescence data was obtained at Δλ of 15 and 60 nm, where obtained results confirmed that STM binds to BSA at the tryptophan residue (Trp. 213). In addition, the distance between STM and the Trp. 213 was estimated via employing the Förster's non-radiative energy-transfer theory, and was found to be 2.73 nm, which in turn indicated that STM can bind to BSA with high probability.  相似文献   

8.
The Stern-Volmer quenching constant (KSV) for quenching of anthracene fluorescence in sodium dodecyl sulfate (SDS) micelles by pyridinium chloride has been reported previously to be 520 M?1 based on steady state fluorescence measurements. However, such measurements cannot distinguish static versus dynamic contributions to the overall quenching. In the work reported here, the quenching dynamics of anthracene in SDS micelles by cetylpyridinium chloride (CPC), an analogue of pyridinium chloride, were investigated using both steady state and time resolved fluorescence quenching. Concurrent measurement of the decrease in fluorescence intensity and lifetime of anthracene provide a quantitative evaluation of collision induced (i.e. dynamic) versus complex formation (i.e. static) quenching of the anthracene fluorophore. The results reveal that a combined quenching mechanism is operative with approximately equal constants of 249?±?6 M?1 and 225?±?12 M?1 for dynamic and static quenching, respectively.  相似文献   

9.
The interaction between αamylase from Bacillus subtilis and cetyltrimethylammonium bromide (CTAB) has been investigated at various temperature conditions using fluorescence and circular dichroism (CD) spectroscopic methods. Fluorescence data revealed that the fluorescence quenching of αamylase by CTAB is the result of complex formation between CTAB and αamylase. The thermodynamic analysis on the binding interaction data shows that the interactions are strongly exothermic (ΔH°=−17.92 kJ mol−1) accompanied with increase in entropy (ΔS° between 109 to 135 J mol−1 K−1). Thus the binding of CTAB to α-amylase is both enthalpic and entropic driven, which represent the predominate role of both electrostatic and hydrophobic interactions in complex formation process. The values of 2.17×10−3 M−1 and 1.30 have been obtained from associative binding constant (Ka) and stoichiometry of binding number (n), from analysis of fluorescence data, respectively. Circular dichroism spectra showed the substantial conformational changes in secondary structure of αamylase due to binding of CTAB, which represents the complete destruction of both secondary and tertiary structure of α-amylase by CTAB.  相似文献   

10.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

11.
In this paper, the binding of trazodone hydrochloride (TZH) to bovine serum albumin (BSA) was investigated by spectroscopic (fluorescence, spectrophotometry and circular dichroism) techniques under simulative physiological conditions. A strong fluorescence quenching reaction of TZH to BSA was observed and the quenching mechanism was suggested as dynamic quenching according to the Stern-Volmer equation. The binding constants of TZH with BSA at 288, 302 and 309 K were calculated as (1.56±0.003)×104, (2.31±0.002)×104 and (5.44±0.004)×104 M−1, respectively. The thermodynamic parameters, ΔH0 and ΔS0 were obtained to be 39.86±0.008 kJ mol−1 and 217.89±0.011 J mol−1 K−1, respectively, which indicated the presence of hydrophobic forces between TZH and BSA. The spectral results observed showed that the binding of TZH to BSA induced conformational changes in BSA. Based on the Förster's theory of non-radiation energy transfer, the binding average distance, r between donor (BSA) and acceptor (TZH) was found to be 2.4 nm. The effect of common ions on binding of TZH to BSA was also examined.  相似文献   

12.
The water-soluble Pr (Ⅲ) and Nd (Ⅲ) complexes with an ofloxacin derivative have been prepared and characterized. The single-crystal X-ray diffraction showed that the Pr (III) and Nd (III) complexes have the similar molecular structure. Under physiological pH condition, the effects of [PrL(NO3)2(CH3OH)](NO3) and [NdL(NO3)2(CH3OH)](NO3) on bovine serum albumin (BSA) were examined using fluorescence spectroscopy in combination with UV-vis absorbance and circular dichroism (CD) spectra. The result reveals that the quenching mechanism of fluorescence of BSA by two complexes is a static quenching process and the number of binding sites is about 1 for both. The thermodynamic parameters (ΔH=−14.52 kJ mol−1, ΔS=56.54 J mol−1 K−1 for [PrL(NO3)2(CH3OH)](NO3) and ΔH=−24.63 kJ mol−1, ΔS=22.07 J mol−1 K−1 for [NdL(NO3)2(CH3OH)](NO3)) indicate that hydrophobic and electrostatic interactions are the main binding force in the complexes-BSA system. The binding average distance between complexes and BSA was obtained on the basis of Förster's theory. In addition, it was proved by the CD spectra that the BSA secondary structure was changed in the presence of complexes in an aqueous solution.  相似文献   

13.
In a previous paper, we have reported that dilute nitric acid in reversed micelle systems can oxidize the Br ion to Br2 and proposed that the nitryl (or nitronium) ion NO2+ should be the active species in the oxidation process. Nitration of phenol in reversed micelle systems with dilute nitric acid, CHCl3/CTAC/H2O (2.0 mol dm− 3 HNO3 in the 1.0% (v/v) H2O phase), was performed at 35 °C to obtain 2- and 4-nitrophenols, where CTAC represents cetyltrimethylammonium chloride. In similar CTAC and AOT reversed micelle (CHCl3 or heptane/AOT) systems, 4-methylphenol was converted to 2-nitro-4-methylphenol, where AOT stands for sodium bis(2-ethylhexyl) sulfosuccinate. In aqueous 2.0 mol dm− 3 HNO3 solution accompanied by 4.0 mol dm− 3 LiCl (and a small amount of LiBr as the bromide resource), trans-1,4-dibromo-2-butene was successfully brominated to 1,2,3,4-tetrabromobutane. This result is a good evidence that the Br ion can be oxidized to Br2 in dilute nitric acid (2.0 mol dm− 3) provided that it contains concentrated salts. At 20-40 °C, the apparent oxidation-reaction rate constants (k/s− 1) of Br to Br2 were evaluated in 0.1-2.0 mol dm− 3 HNO3 solution accompanied by concentrated LiCl (3.5-9.0 mol dm− 3). For chloride salts, the cation effects increased as Et4N+ ? Na+ < Li+ < Ca2+ < Mg2+. Even the evolution of Cl2 was demonstrated from < 2.0 mol dm− 3 HNO3 solution containing concentrated LiCl, MgCl2, and CaCl2 as well as AlCl3, therefore, an indirect oxidation mechanism of the Br ion through Cl2 was proposed as follows: 2Cl + NO2+ → Cl2 + NO2; 2Br + Cl2 → Br2 + 2Cl.  相似文献   

14.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

15.
The nature of the conformational transition of the polymers with Ru (II) polypyridyl complexes covalently attached to poly(acrylic acid) (PAA) and poly(metacrylic acid) (PMAA) has been in studied in aqueous solutions at different pH values. The [PAA-Ru4]8+ and [PMAA-Ru4]8+ polymers has been investigated by means of the luminescence properties of the Ru(bpy)32+ moiety by steady-state and time-resolved luminescence spectroscopy. The pH markedly affects the luminescence spectra and quantum yields of both ruthenium-polyacid complexes in aqueous solution. Another feature investigated in this work was a comparative study of their luminescence quenching by acridinic dyes in solution. The analysis of the kq values obtained indicates that the bimolecular quenching by acridinium and 9-aminoacridinium is more effective in the [PAA-Ru4]8+ complex (6.4×109 and 1.4×109 M−1 s−1, respectively) compared to the [PMAA-Ru4]8+ (2.6×109 and 1.0×109 M−1 s−1). Also, a similar behavior was evidenced for the Ru solely adsorbed onto pure PAA (9.0×109 and 3.4×109 M−1 s−1) and PMAA (1.8×109 and 1.7×109 M−1 s−1) in aqueous solution. The effect of enhancement of quenching rate constant in [PAA-Ru4]8+ system could be ascribed to the higher density of Ru per polymer chain. The average number per chain is similar in both systems, but the molecular weight is lower for [PAA-Ru4]8+. Furthermore, the larger hydrophilic environment provided by the PAA exposes the Ru probe to the outer surface of the polymer in solution.  相似文献   

16.
The Gd60Co26Al6Ge8 alloy has been prepared by the copper-mold suck-casting and its phase component has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). It is shown that this alloy consists of primary crystalline Gd5Ge3 phase and amorphous matrix. The glass transition temperature (Tg) and crystallization temperatures (Tx) occur at 292 and 320 °C, respectively. The maximal magnetic entropy change (ΔSM) under 0-5 T field is about 7.6 J (kg−1 K−1) at 155 K and the refrigeration capacity (RC) is about 768 J kg−1, which makes Gd60Co26Al6Ge8 bulk metallic glass matrix composite a promising candidate for magnetic refrigerant.  相似文献   

17.
The high-temperature photochemistry (HTP) technique, previously used for reactions of neutral species, has been adapted to the study of atomic metal ion-molecule reactions. Ca+ ions were generated by 193 nm multi-photon photolysis of calcium acetyl acetonate and its pyrolysis fragments. The relative ion concentrations were monitored by laser-induced fluorescence at 393.4 nm. Ar was used as the bath gas. The data for the Ca+ + O2 + M → CaO2+ + M association reaction (1) are fitted by k1(907-1425 K) = 3.5 × 10−32 exp(+3161 K/T) cm6 molecule−2 s−1. Combining with an approximate k1(296 K) value in the literature leads to k1(296-1425 K) = 5.8 × 10−22 (T/K)−2.9 exp(−601 K/T) cm6 molecule−2 s−1. Over much of the observed temperature range reaction (1) has much smaller rate coefficients than the corresponding neutral Ca association reaction. Reaction (1) is shown to behave very similarly to the O2 association reaction with neutral K atoms, with which Ca+ is iso-electronic. This suggests that the initial step is ion-pair complex formation of the superoxide Ca2+(O2), which is also consistent with results from density functional calculations. The k1 values are rationalized via Troe’s unimolecular formalism, which leads to good accord with the experiments.  相似文献   

18.
The interaction of disperse blue SBL (DBSBL) with bovine serum albumin (BSA) was investigated using fluorescence, UV-visible and far-UV circular dichroism (CD) spectroscopy. The results showed that the fluorescence of BSA was quenched by DBSBL through static quenching after correcting for the inner filter effects (IFE). The binding constant Kb of DBSBL with BSA at 288, 298 and 303 K were 0.116×106, 3.18×106 and 12.3×106 L mol−1, respectively. The thermodynamic parameters, standard enthalpy change (ΔH0) and standard entropy change (ΔS0), for the reaction were evaluated to be 227.2 kJ mol−1 and 886 J mol−1 K−1 according to the van’t Hoff equation. The above data suggested that the forces acting between DBSBL and BSA were predominantly hydrophobic interactions. The results of UV-visible absorption and far-UV CD spectroscopy also revealed that the conformation and microenvironment of BSA molecule were changed after DBSBL binding to BSA. At 288 K one binding site was present but at higher temperatures a second binding site was detected between DBSBL and the BSA molecule. The lower bound for the distance between the bound dye and the Trp residue is 2.35 nm as calculated from Forster energy transfer.  相似文献   

19.
In order to investigate the secondary cluster ion emission process of organo-metallic compounds under keV ion bombardment, self-assembled monolayers (SAMs) of alkanethiols on gold are ideal model systems. In this experimental study, we focussed on the influence of the primary ion species on the emission processes of gold-alkanethiolate cluster ions from a hexadecanethiol SAM on gold. For this purpose, we carried out time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements using the following primary ion species and acceleration voltages: Ar+, Xe+, SF5+ (10 kV), Bi+, Bi3+(25 kV), Bi32+, Bi52+, Bi72+ (25 kV).It is well known that molecular ions M and gold-alkanethiolate cluster ions AuxMy with M = S-(CH2)15-CH3, x − 3 ≤ y ≤ x + 1, x, y > 0, show intense peaks in negative mass spectra. We derived yields YSI exemplarily for the molecular ions M and the gold-hexadecanethiolate cluster ions Auy+1My up to y = 8 and found an exponentially decreasing behaviour for increasing y-values for the cluster ions.In contrast to the well-known increase in secondary ion yield for molecular secondary ions when moving from lighter to heavier (e.g. Ar+ to Xe+) or from monoatomic to polyatomic (e.g. Xe+ to SF5+) primary ions, we find a distinctly different behaviour for the secondary cluster ions. For polyatomic primary ions, there is a decrease in secondary ion yield for the gold-hexadecanethiolate clusters whereas the relative decrease of the secondary ion yield ξY with increasing y remains almost constant for all investigated primary ions.  相似文献   

20.
Fourier transform spectra of mono-13C ethylene have been recorded in the 8.4-14.3-μm spectral region (700-1190 cm−1) using a Bruker 120 HR interferometer at a resolution of 0.0017 cm−1 allowing the extensive study of the set of resonating states {101, 81, 71, 41, 61}. Due to the high resolution available as well as the extended spectral range involved in this study, a much larger set of line assignments are now available. The present analysis has lead to the determination of more accurate spectroscopic constants, including interaction constants, than were obtained in earlier studies. In particular, the following band centers were derived: ν0(ν10) = 825.40602(30) cm−1, ν0(ν8) = 932.19572(15) cm−1, ν0(ν7) = 937.44452(10) cm−1, ν0(ν4) = 1025.6976(14) cm−1. Finally a synthetic spectrum was generated leading to the assignment of a number of 13C12CH4 lines observed in an earlier heterodyne spectroscopic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号