首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Spectroscopic properties of Nd3+ in barium fluoroborophosphate glassy matrix have been analyzed by fitting the experimental data with the standard Judd-Ofelt theory. Various spectroscopic parameters viz. radiative transition probabilities, radiative decay time, fluorescence branching ratios, electric dipole line strengths, stimulated emission cross-sections and optical gain of the principal fluorescence transitions from the 4F3/2 metastable level are obtained. Results show that addition of borate content to the fluorophosphate matrix will reduce the fluorescence spectral properties of Nd3+. However, the radiative properties of the present fluoroborophosphate glassy matrix are found to be well improved over that of pure borate and phosphate matrix and is attributed to the influence of fluorine content in the glassy matrix. The changes in the position and the Judd-Ofelt intensity parameters are correlated with the structural changes in the host glass matrix. The shift of the hypersensitive band shows that the covalency of the rare earth to oxygen bond increases with the increase of Na2O content. This covalency effect and the formation of the BO4 groups with the addition of Na2O content are responsible for the increase in the radiative properties of the present system. Quantitative estimation of the non-radiative processes such as multiphonon relaxation and quenching by water content was carried out and the results show that both are below the critical level for optimum laser performance.  相似文献   

2.
Neodymium doped phosphate glasses have been prepared by the semi-continuous melting technique. Their absorption and emission spectra have been recorded at room temperature. The Judd-Ofelt theory has been applied to evaluate the stimulated emission cross sections of 4F3/24I11/2 transition for Nd3+. The higher stimulated emission cross section, 4.0×10-20cm2, is obtained. The fluorescence decays of the 4F3/24I11/2 transition of Nd3+ are measured for the samples doped (0.7-10) wt% of Nd2O3 at room temperature. The concentration quenching of Nd-doped phosphate glass is mainly attributed to cross-relaxation and energy migration. The site-dependent properties of fluorescence spectra and the fluorescence lifetime of the Nd3+-doped phosphate glass (with 2.2wt%Nd2O3) are studied using laser-induced fluorescence line narrowing techniques, and the site-to-site variations of optical properties are observed at low temperature.  相似文献   

3.
钕玻璃的光谱性质   总被引:1,自引:0,他引:1       下载免费PDF全文
本文分析了Nd3+在玻璃中的stark分裂情况,描写了确定荧光能级的实验方法,并给出了钕在四种硅酸盐玻璃中亚稳态和基态能级Stark分裂的实验结果。同时,对十三种不同成份的玻璃,通过光谱实验确定了Nd3+ 4F3/2态的辐射和无辐射跃迁速率,受激发射截面σ,辐射量子效率η,荧光分支比β和亚稳态寿命τ等激光常用参数。并对实验结果进行了讨论。 关键词:  相似文献   

4.
The absorption and luminescence spectra of Nd3+ ions in inorganic solvents POCl3—MeCln (Me = Sn, Zr, Ti, or Al) are measured. The spectra are analyzed in terms of the Judd—Ofelt theory. The Judd—Ofelt parameters, oscillator strengths, spontaneous emission probabilities, luminescence quantum yields, and stimulated emission cross sections for the laser transition 4F3/24I11/2 of the Nd3+ ion in POCl3—MeCln—Nd3+ solutions are calculated.  相似文献   

5.
Nd3+ ions doped alkaline-earth titanium phosphate glasses were prepared by using the conventional melt quenching method. Absorption spectra were recorded and oscillator strengths of the transitions were calculated using area under the absorption bands. The energy level analysis was carried out by using free-ion Hamiltonian model. The three host dependent Judd-Ofelt intensity parameters, Ωλ (λ = 2, 4, and 6) were used to elucidate the structure of glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as radiative transition probabilities, branching ratios and radiative lifetimes. The decay curves of all the three glasses show single exponential behavior. The discrepancy between the experimental and calculated lifetimes of emitting level was attributed to multiphonon relaxation. The achieved high quantum efficiencies for the 4F3/2 level indicate efficient laser emission at 1.06 μm in these glass systems.  相似文献   

6.
Amplified spontaneous emission spectra and light amplification spectra of some Nd3+:glass rods (silicate glass Schott LG680, phosphate glasses Schott LG760 and Hoya LHG5) are measured by pulsed flashlamp excitation. The spontaneous emission distribution, the stimulated emission cross-section spectra and the excited state absorption cross-section spectra are extracted. Excited state absorption prevents laser action around 1320 nm for the4F3/2-4L13/2 transition of Nd3+ in the investigated glasses.  相似文献   

7.
8.
We measured the absorption and luminescence spectra of Nd3+ ions in an inorganic solvent POCl3-BCl3. The spectra were analyzed in terms of the Judd-Ofelt theory. We calculated the Judd-Ofelt parameters, oscillator strengths, spontaneous emission probabilities, luminescence quantum yield, and the stimulated emission cross section for the laser transition 4 F 3/24 I 11/2 of the neodymium ion in a POCl3-BCl3-Nd3+ solution.  相似文献   

9.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

10.
Judd-Ofelt analyses of Nd3+ ions in the oxyfluoride glasses and glass ceramics containing CaF2 nanocrystals are performed to evaluate the intensity parameters Ω2,4,6, spontaneous emission probability, radiative lifetime, quantum efficiency, as well as stimulated emission cross-section. The influences of Nd3+-doping level and heating temperature on these parameters for the 4F3/24IJ (J=9/2, 11/2, and 13/2) transitions are systematically discussed. The decrease of intensity parameter Ω2 evidences the incorporation of Nd3+ ions into CaF2 nanocrystals after crystallization. With increasing of Nd3+-doping level, the measured lifetime and quantum efficiency gradually decrease, while the stimulated emission cross-section keeps almost unchanged. For 1.0 mol% Nd3+-doped sample, both the emission intensity and the measured lifetime enhance with increasing of heating temperature up to 650 °C. The results indicate that the investigated glass ceramics are potentially applicable as the 1.06 um laser host.  相似文献   

11.
Spectral properties of Nd3+ and Dy3+ ions in different phosphate glasses were studied and several spectroscopic parameters were reported. Covalency of rare-earth-oxygen bond was studied in these phosphate glass matrices with the variation of modifier in host glass matrix. Using Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6), radiative transition probabilities (A) and radiative lifetimes (τR) of certain excited states of Nd3+ and Dy3+ ions are estimated in these glass matrices. From the magnitudes of branching ratios (βR) and integrated absorption cross-sections (Σ), certain transitions of both the ions are identified for laser excitation. From the emission spectra, peak stimulated emission cross-sections (σP) are evaluated for the emission transitions observed in all these phosphate glass matrices for both Nd3+ and Dy3+ ions.  相似文献   

12.
Thermal, structural and optical properties of Nd3+ ions in tellurite glass (TeO2-ZnO-Na2O-Li2O-Nb2O5) have been investigated. Differential thermal analysis revealed reasonably good forming tendency of the glass composition. FTIR spectra were used to analyze the functional groups present in the glass. Judd-Ofelt intensity parameters were derived from the absorption spectrum and used to calculate the radiative lifetime, branching ratio and stimulated emission cross-section of the 4F3/24I9/2, 11/2, 13/2 transitions. The quantum efficiency of the 4F3/2 level is comparable as well as higher than the typical value of the other tellurite based glasses. The decay from the 4F3/2 level is found to be single exponential for different concentrations of Nd3+ ions with a shortening of lifetime with increasing concentration. The experimental values of branching ratio and saturation intensity of 4F3/24I11/2 transition indicate the favourable lasing action with low threshold power.  相似文献   

13.
李涛  张勤远  姜中宏 《物理学报》2006,55(8):4298-4303
研究了能量接受离子Ce3+对Er3+上转换发光强度以及Er3+在1.5μm附近波段发光性能参数的影响,并从能量匹配及能级结构角度出发对Er3+/Ce3+间的能量转移机制进行了分析.分析认为,4I11/2能级的Er3+通过无辐射能量转移把能量传递给2F5/2能级的Ce3+关键词: 氟磷酸盐玻璃 光谱性质 光纤放大器 3+和Ce3+')" href="#">Er3+和Ce3+  相似文献   

14.
丁君  杨秋红  唐在峰  徐军  苏良碧 《物理学报》2006,55(12):6414-6418
采用传统无压烧结工艺制备了Nd3+掺杂的Y2-2xLa2xO3(x=0.08)透明陶瓷并对其光谱性能进行了研究. 结果表明:Nd3+:Y1.84La0.16O3透明陶瓷在780—850 nm的波长范围内有较宽的吸收带. 当Nd3+掺杂量为1.5at%时,在820 nm和激光二极管抽运的808 nm处的吸收截面分别为σabs(820 nm)=1.81×10-20 cm2σabs(808 nm)=1.54×10-20 cm2. 最强的发射峰位于1078 nm处,并具有荧光寿命长、发射带宽宽、量子效率高等特点. 加入La2O3后,基质的光谱品质参数XNd由1.6减小到0.46,因此和4F3/24I11/2跃迁相对应的荧光分支比βJ,11/2增大为56.82%. Nd3+:Y1.84La0.16O3透明陶瓷的这些性质有利于高效率的激光输出和超短锁模激光脉冲的实现. 关键词: 氧化镧钇透明陶瓷 光谱性能 3+')" href="#">Nd3+  相似文献   

15.
钕离子掺杂和钕铝共掺高硅氧玻璃的光谱性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
乔延波  达宁  陈丹平  邱建荣 《物理学报》2007,56(12):7023-7028
基于多孔玻璃烧结的方法制备了钕离子掺杂和钕铝共掺高硅氧玻璃,测量了掺钕高硅氧玻璃的吸收光谱、荧光光谱和荧光寿命. 利用Judd-Ofelt理论计算得到了钕离子在高硅氧玻璃中的强度参数,计算并对比了掺钕高硅氧玻璃和钕铝共掺高硅氧玻璃的理论荧光寿命、受激发射截面和发光量子效率.讨论了钕铝共掺高硅氧玻璃中铝离子的掺入对玻璃发光性质的影响. 通过与其他掺钕氧化物玻璃和一些商用硅酸盐玻璃的主要光谱性质的比较,掺钕高硅氧玻璃显示了较好的光谱性质,有可能成为一种应用于高能和高频激光领域的新型激光材料. 关键词: 掺钕高硅氧玻璃 钕铝共掺 光谱性质 Judd-Ofelt理论  相似文献   

16.
We report on studies of changes in the emission spectra (excited at 808 nm) of the Yb-doped Ca4NdO(BO3)3 single crystals due to the photothermal effects caused by the pulsed Nd:YAG laser. Increase of the sample's surface temperature after laser treatment leads to significant enhancement of the 1040 to 1060 nm emission (ascribed to the Nd3+ 4F3/2 → 4I9/2, 4I11/2 transitions) and simultaneous decrease of the 975 to 1050 nm emission (corresponding to the Yb3+ 2F5/2 → 2F7/2 transition). We explain such an increase of the Nd3+ luminescence by thermally activated Yb3+ → Nd3+ energy transfer.  相似文献   

17.
李成仁  李淑凤  董斌  程宇琪  殷海涛  杨静  陈宇 《中国物理 B》2011,20(1):17803-017803
This paper reports that a series of Nd3+:Er3+:Yb3+ co-doped borosilicate glasses have been prepared and their absorption spectra measured. The J--O intensity parameters Ωk (k=2, 4, 6), spontaneous radiative lifetime τrad, spontaneous transition probability A, fluorescence branching ratio β and oscillator strength fed of the Nd3+ ions at room temperature are calculated based on Judd--Ofelt (J--O) theory. The temperature dependence of the up-conversion photoluminescence characteristics in a Nd3+:Er3+:Yb3+ co-doped sample is studied under a 978 nm semiconductor laser excitation, and the energy transfer mechanisms among Yb3+, Er3+ and Nd3+ ions are analysed. The results show that the J--O intensity parameters Ω2 increase when the Nd3+ concentration of the Nd3+:Er3+:Yb3+ co-doped borosilicate glasses increases. The possibility of spontaneous transition is small and lifetimes are long at levels of 4F5/2 and 4F3/2. The intensity of Nd3+ emissions at 595, 691, 753, 813 and 887 nm are markedly enhanced when the sample temperature exceeds 400 K. The reasons being the cooperation of the secondary sensitization from Er3+ to Nd3+ and the contribution of a multi-phonon.  相似文献   

18.
Nd3+:Na0.4Y0.6F2.2 (Nd3+:NYF) crystals are grown by the Stockbarger–Bridgman method for a stoichiometric mixture prepared by the solid-phase method and containing neodymium up to 20 at. %. The absorption spectrum of Nd3+:NYF crystals exhibits bands located in the emission region of laser diodes. The peak absorption cross section of the 796.8-nm band is σ a = 0.96 × 10–20 cm2 and the bandwidth is Δλ = 17.5 nm. The most intense luminescence band is located at 1.05 μ m and the radiative time of the 4F3/2 level is τ0 = τexp ~ 960 μ s. It is shown that the 2P3/2 and 4D3/2 levels of Nd3+:NYF crystals are also radiative with lifetimes τ exp equal to ~110 and 9.5 μ s, respectively. However, these radiative transitions are partially quenched due to nonradiative relaxation. The intensity parameters Ω t are determined by the Judd–Ofelt method to be Ω2 = 1.18 × 10–20, Ω4 = 1.55 × 10–20, and Ω 6 = 2.85 × 10–20 cm 2. Using these parameters, the probabilities of radiative transitions and branching ratios are calculated, and the probabilities of nonradiative transitions are estimated. A conclusion is made that Nd3+:NYF crystals are promising as active media for diode-pumped tunable lasers, in particular, up-conversion-pumped lasers.  相似文献   

19.
New type of fluorophosphate glasses with different Tm3+/Ho3+ doping concentrations have been prepared. From the measured fluorescence spectra, strong emission near 2 μm is demonstrated in the samples. Based on the absorption spectra, the Judd–Ofelt parameters and radiative properties were calculated and compared with those of other glass hosts. Then for our prepared Tm3+/Ho3+ codoped fluorophosphate glass, the higher predicted spontaneous transition probability (76.54 s?1) along with the larger calculated emission cross-section (6.15×10?21 cm2) gives evidence of intense 2 μm fluorescence. Besides, it is found that the optimum doping concentration is 4 mol% Tm3+/1 mol% Ho3+ for the strongest 2 μm emission in our prepared samples.  相似文献   

20.
A complete set of spectroscopic parameters, including Judd-Ofelt parameters, radiative transition probabilities, radiative lifetime, branching ratios and integrated absorption cross section, have been calculated for Tm3+- doped fluoroaluminate (AYF) glass, based on the measured absorption spectra. The mechanism of Tm3+→Tm3+ and Yb3+\Leftrightarrow Tm3+ energy transfers and fluorescence properties have been investigated in both Tm3+ single-doped and Yb3+/Tm3+ double-doped AYF glasses. The cross-relaxation process, 3F4+3H6→23H4, is proved, which makes the optimum Tm3+ concentration of 1.77μm fluorescence (3H43H6) much higher than 1.45μm fluorescence (3F433H4) in Tm3+:AYF glasses. In Yb3+/Tm3+:AYF glasses, a stronger concentration quenching is found for the 476nm emission than that for the 797nm emission, and is discussed under the 970nm-excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号