首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monolayers of two glycerol esters, 1-monooleoylglycerol and 1-monostearoylglycerol, were studied at the air-water interface in the 15–30C temperature range.From the experimental isotherms (surface pressure vs area and surface potential vs area) the surface phases of the esters were inferred.The miscibility between the two esters was discussed in relationship to the interfacial orientations and distributions and to the surface phases of the esters.The results obtained supported and strengthened the empirical rule on miscibility previously found [1–7], i.e., for non-ionic compounds the same interfacial orientation of the hydrophobic chains is required in order to have bidimensional miscibility between the components.  相似文献   

2.
We study interfacial properties of rigid-rod-like poly(n-hexyl isocyanate) (PHIC), flexible poly(vinyl acetate) (PVAc), and mixed films of PHIC and PVAc spread at the air-water interface as a function of the molar fraction of PHIC by surface pressure measurements and fluorescence microscopy. From the plots of the experimental mean area of the mixed polymer films at a constant surface pressure as a function of the molar fraction of PHIC in the mixed films, the binary mixtures of PHIC/PVAc were concluded to be compatible at the air-water interface. This means that the hydrophobic hexyl group of PHIC takes a horizontal orientation to the air-water interface rather than a perpendicular one, leading to PHIC and PVAc having the same interfacial orientation. Compatibility of the binary mixtures of PHIC/PVAc at the air-water interface is also confirmed by their fluorescence microscopic images, since PHIC proves to be inhomogeneous and PVAc is homogeneous with the aid of a fluorescence probe, respectively.  相似文献   

3.
Sum frequency vibrational spectroscopy was used to study adsorption of leucine molecules at air-water interface from solutions with different concentrations and pH values. The surface density and the orientation of the isopropyl head group of the adsorbed leucine molecules could be deduced from the measurements. It was found that the orientation depends on the surface density, but only weakly on bulk pH value at the saturated surface density. The vibrational spectra of the interfacial water molecules appeared to be strongly affected by the charge state of the adsorbed leucine molecules. Enhancement and inversion of polar orientation of interfacial water molecules by surface charges or field controllable by the bulk pH value were observed.  相似文献   

4.
Microscopic and molecular structures of omega- and gamma-gliadin monolayers at the air-water interface were studied under compression by three complementary techniques: compression isotherms, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM). For high molecular areas, gliadin films are homogeneous, and a flat orientation of secondary structures relative to the interface is observed. With increasing compression, the nature and orientation of secondary structures changed to minimize the interfacial area. The gamma-gliadin film is the most stable at the air-water interface; its interfacial volume is constant with increasing compression, contrary to omega-gliadin films whose molecules are forced out of the interface. gamma-Gliadin stability at a high level of compression is interpreted by a stacking model.  相似文献   

5.
Bidimensional two-component mixtures of polylaurylmethacrylate with polyoctadecylmethacrylate, polymethylmethacrylate and stearic acid were studied in the 15–30 °C temperature range at the air-water interface, in order to determine the effect of the state of the hydrophobic side chains on the bidimensional miscibility.We showed that bidimensional miscibility depends on whether the two components have the same interfacial orientation, and that the fluidity of the polymer side chains also plays a very important role.  相似文献   

6.
The effect of the environmental conditions both on the behaviour of fengycin at the air-aqueous interface and on its interaction with DPPC was studied using surface pressure-area isotherms and AFM. The ionisation state of fengycin is at the origin of its monolayer interfacial properties. The most organised interfacial arrangement is obtained when fengycin behaves as if having zero net charge (pH 2). In a fully ionised state (pH 7.4), the organisation and the stability of fengycin monolayers depend on the ionic strength in the subphase. This can modulate the surface potential of fengycin and consequently the electrostatic repulsions inside the interfacial monolayer, as well as the lipopeptide interaction with the layer of water molecules forming the air-water interface. Intermolecular interactions of fengycin with DPPC are also strongly affected by the ionisation state of lipopeptide and the surface pressure (Pi) of the monolayer. A better miscibility between both interfacial components is observed at pH 2, while negatively charged lipopeptide molecules are segregated from the DPPC phase. A progressive desorption of fengycin from the interface is observed at pH 7.4 when Pi increases while at pH 2, fengycin desorption brutally occurs when Pi rises above Pi value of the intermediate plateau.  相似文献   

7.
The aggregation properties of an antibiotic membrane-active peptide alamethicin at the air-water interface have been studied using interfacial rheology and fluorescence microscopy techniques. Fluorescence microscopy of alamethicin monolayers revealed a coexistence of liquid expanded (LE) and solid phases at the surface concentrations studied. Interfacial oscillatory shear measurements on alamethicin monolayers indicate that its viscoelastic properties are determined by the area fraction of the solid domains. The role of zwitterionic phospholipids dioleoylphosphatidyl choline (DOPC) and dioleoylphosphatidyl ethanolamine (DOPE) on the peptide aggregation behavior was also investigated. Fluorescence microscopy of alamethicin/phospholipid monolayers revealed an intermediate phase (I) in addition to the solid and LE phase. In mixed monolayers of phospholipid (L)/alamethicin (P), with increase in L/P, the monolayer transforms from a viscoelastic to a viscous fluid with the increase in area fraction of the intermediate phase. Further, a homogeneous mixing of alamethicin/lipid molecules is observed at L/P > 4. Our studies also confirm that the viscoelasticity of alamethicin/phospholipid monolayers is closely related to the alamethicin/phospholipid interactions at the air-water interface.  相似文献   

8.
The design of new molecules with directed interactions to functional molecules as complementary building blocks is one of the main goals of supramolecular chemistry. A new p-tert-butylcalix[6]arene monosubstituted derivative bearing only one alkyl chain with an acid group (C6A3C) has been synthesized. The C6A3C has been successfully used for building Langmuir monolayers at the air-water interface. The C6A3C molecule adopts a flatlike orientation with respect to the air-water interface. The molecular structure gives the molecule amphiphilic character, while allowing the control of both the dissociation degree and the molecular conformation at the air-water interface. The C63AC has been combined with pristine fullerene (C60) to form the supramolecular complex C6A3C:C60 in 2:1 molar ratio (CFC). The CFC complex retains the ability of C6A3C to form Langmuir monolayers at the air/water interface. The interfacial molecular arrangement of the CFC complex has been convincingly described by in situ UV-vis reflection spectroscopy and synchrotron X-ray reflectivity measurements. Computer simulations complement the experimental data, confirming a perpendicular orientation of the calixarene units of CFC with respect to the air-water interface. This orientation is stabilized by the formation of intermolecular H-bonds. The interfacial monolayer of the CFC supramolecular complex is proposed as a useful model for the well-defined self-assembly of recognition and functional building blocks.  相似文献   

9.
Monolayers of poly-methacrylates containing either aromatic or linear side groups were studied at the air-water interface. The aim of the work is to define the role of the aromatic group in determining the interfacial distribution and orientation of these polymers. Surface pressure measurements show that all the polymers give stable expanded monomolecular films between 288 K and 308 K temperature range.Surface potential and ellipsometric measurements show that both aromatic and aliphatic polymers are in an almost horizontal conformation at the liquid-air interface. From a comparison of the experimental isotherms with Huggins' theory, it was deduced that no preferential interactions exist between benzene rings in the film. In contrast, preferential attractive energies are observed for n-alkylmethacrylates.Further information on the state of the collapsed film was obtained from electron scanning micrographs.  相似文献   

10.
The Langmuir monolayer of aequorin and apoaequorin was studied by infrared reflection-absorption spectroscopy (IRRAS) and polarization-modulated IRRAS techniques. The alpha-helices in the aequorin Langmuir monolayer were parallel to the air-water interface at zero surface pressure. When the surface pressure increased to 15 mN.(m-1), the alpha-helices became tilted and the turns became parallel to the air-water interface. As for apoaequorin, the alpha-helices were also parallel to the air-water interface at 0 mN.m(-1). However, the alpha-helix became tilted and the turns became parallel to the air-water interface quickly at 5 mN.m(-1). With further compression of the apoaequorin Langmuir monolayer, the orientation remained the same. The different behaviors of aequorin and apoaequorin at the air-water interface were explained by the fact that aequorin formed dimers at the air-water interface but apoaequorin was a monomer. It is more difficult for a dimer to be tilted by the compression of the Langmuir monolayer.  相似文献   

11.
In this work we have used different and complementary interfacial techniques (surface film balance, Brewster angle microscopy, and interfacial shear rheology), to analyze the static (structure, topography, reflectivity, miscibility, and interactions) and flow characteristics (surface shear characteristics) of milk protein (beta-casein, caseinate, and beta-lactoglobulin) and monoglyceride (monopalmitin and monoolein) mixed films spread and adsorbed on the air-water interface. The structural, topographical, and shear characteristics of the mixed films depend on the surface pressure and on the composition of the mixed film. The surface shear viscosity (eta(s)) varies greatly with the surface pressure (pi). In general, the greater the pi values, the greater were the values of eta(s). Moreover, the eta(s) value is also sensitive to the miscibility and/or displacement of film-forming components at the interface. At surface pressures lower than that for protein collapse, protein and monoglyceride coexist at the air-water interface. At surface pressures higher than that for the protein collapse, a squeezing of collapsed protein domains by monoglycerides was deduced. Near to the collapse point, the mixed film is dominated by the presence of the monoglyceride. Different proteins and monoglycerides show different interfacial structure, topography, and shear viscosity values, confirming the importance of protein and monoglyceride structure in determining the interfacial characteristics (interactions) of mixed films. The values of eta(s) are lower for disordered (beta-casein or caseinate) than for globular (beta-lactoglobulin) proteins and for unsaturated (monoolein) than for saturated (monopalmitin) monoglycerides in the mixed film. The displacement of the protein by the monoglycerides is facilitated under shear conditions.  相似文献   

12.
Processes that inject gases such as carbon dioxide and natural gas have long been and still continue to be used for recovering crude oil from petroleum reservoirs. It is well known that the interfacial tension between the injected gas and the crude oil has a major influence on the efficiency of displacement of oil by gas. When the injected gas becomes miscible with the crude oil, which means that there is no interface between the injected and displaced phases or the interfacial tension between them is zero, the oil is displaced with maximum efficiency, resulting in high recoveries. This paper presents experimental measurements of interfacial tension between crude oil and natural gases (using a computerized drop shape analysis technique) as a function of pressure and gas composition at the temperature of the reservoir from which the crude oil was obtained. The point of zero interfacial tension was then identified from these measurements by extrapolation of data to determine minimum miscibility pressure (MMP) and minimum miscibility composition (MMC). The gas-oil miscibility conditions thus obtained from interfacial tension measurements have been compared with the more conventional techniques using slim-tube tests and rising-bubble apparatus as well as predictive correlations and visual observations. The miscibility pressures obtained from the new VIT technique were 3-5% higher than those from visual observations and agreed well with the slim-tube results as well as with the correlations at enrichment levels greater than 30 mol% C2+ in the injected gas stream. The rising bubble apparatus yielded significantly higher MMPs. This study demonstrates that the VIT technique is rapid, reproducible, and quantitative, in addition to providing visual evidence of gas-oil miscibility.  相似文献   

13.
An amphiphilic heteroarm star polymer containing 12 alternating hydrophobic/hydrophilic arms of polystyrene (PS) and poly(acrylic acid) (PAA) connected to a well-defined rigid aromatic core was studied at the air-water and the air-solid interfaces. At the air-water interface, the molecules spontaneously form pancakelike micellar aggregates which measure up to several microns in diameter and 5 nm in thickness. Upon reduction of the surface area per molecule to 7 nm2, the two-dimensional micelles merged into a dense monolayer. We suggest that confined phase separation of dissimilar polymer arms occurred upon their segregation on the opposite sides of the rigid disklike aromatic core, forcing the rigid cores to adopt a face-on orientation with respect to the interface. Upon transfer onto solid supports the PS chains face the air-film interface making it completely hydrophobic, and the PAA chains were found to collapse and form a thin flattened underlayer. This study points toward new strategies to create large 2D microstructures with facial amphiphilicity and suggests a profound influence of star molecular architecture on the self-assembly of amphiphiles at the air-water interface.  相似文献   

14.
The flexoelectric effect of 4-heptyloxy-4'-cyanobiphenyl (7OCB) monolayers at the air-water interface is studied by Maxwell displacement current (MDC) and optical second harmonic generation measurements. Though MDC was expected to increase during the compression of 7OCB monolayers in L2L2' phase from the MDC theory developed previously, decrease of MDC was detected in these phases. This abnormalous phenomenon is found to be due to the quench of flexoelectric effect by the flow orientation of monolayers.  相似文献   

15.
Caminati  G.  Gabrielli  G.  Puggelli  M.  Ferroni  E. 《Colloid and polymer science》1989,267(3):237-245
The interfacial properties of mixtures of polymethacrylic polymers containing either aromatic or aliphatic side groups were studied at water-air interface in order to define the role of geometrical orientation on surface compatibility and the effect of aromatic interactions on ordered bidimensional systems. Two binary systems were studied: polyphenylmethacrylate/ polyhexylmethacrylate and polyphenylmethacrylate/polybenzylmethacrylate.Surface pressure and surface potential measurements were performed in the 288–303 K temperature range on the mixtures at different polymer concentrations. Further information was obtained from ellipsometric measurements and scanning electron microscopy of the collapsed material. The experimental results allow for the conclusion that both polymers containing aromatic groups are almost ideally miscible whereas mixtures of aliphatic and aromatic polymers are completely immiscible.  相似文献   

16.
UV-vis reflection spectroscopy has been used for proving in situ the organization of pure viologen and hybrid viologen tetracyanoquinodimethanide monolayers at the air-water interface. Other more classical measurements concerning Langmuir monolayers, including surface pressure-area and surface potential-area isotherms, are also provided. The organization of the viologen in the Langmuir monolayer was investigated upon the different states of compression, and the tilt angle of the viologen moieties with respect to the water surface was determined. A gradual transition of the viologen molecules from a flat orientation in the gas phase to a more tilted position with respect to the water surface in the condensed phases occurs. The addition of a tetracyanoquinodimethane (TCNQ) salt in the subphase leads to the penetration of TCNQ anions into the positively charged viologen monolayer forming a hybrid viologen tetracyanoquinodimethanide film where a charge-transfer interaction between the two moieties is observed. From a quantitative analysis of the reflection spectra, an organization model of these hybrid monolayers at the air-water interface is proposed, suggesting a parallel arrangement of viologen and TCNQ units with a 1:2 stoichiometry.  相似文献   

17.
The miscibility and stability of the binary monolayers of zwitterionic dipalmitoylphosphatidylcholine (DPPC) and cationic dioctadecyldimethylammonium bromide (DOMA) at the air-water interface and the interaction of ferritin with the immobilized monolayers have been studied in detail using surface pressure-area isotherms and surface plasmon resonance technique, respectively. The surface pressure-area isotherms indicated that the binary monolayers of DPPC and DOMA at the air-water interface were miscible and more stable than the monolayers of the two individual components. The surface plasmon resonance studies indicated that ferritin binding to the immobilized monolayers was primarily driven by the electrostatic interaction and that the amount of adsorbed protein at saturation was closely related not only to the number of positive charges in the monolayers but also to the pattern of positive charges at a given mole fraction of DOMA. The protein adsorption kinetics was determined by the properties of the monolayers (i.e., the protein-monolayer interaction) and the structure of preadsorbed protein molecules (i.e., the protein-protein interaction).  相似文献   

18.
Particle-stabilized emulsions and foams offer a number of advantages over traditional surfactant-stabilized systems, most notably a greater stability against coalescence and coarsening. Nanoparticles are often less effective than micrometer-scale colloidal particles as stabilizers, but nanoparticles grafted with polymers can be particularly effective emulsifiers, stabilizing emulsions for long times at very low concentrations. In this work, we characterize the long-time and dynamic interfacial tension reduction by polymer-grafted nanoparticles adsorbing from suspension and the corresponding dilatational moduli for both xylene-water and air-water interfaces. The dilatational moduli at both types of interfaces are measured by a forced sinusoidal oscillation of the interface. Surface tension measurements at the air-water interface are interpreted with the aid of independent ellipsometry measurements of surface excess concentrations. The results suggest that the ability of polymer-grafted nanoparticles to produce significant surface and interfacial tension reductions and dilatational moduli at very low surface coverage is a key factor underlying their ability to stabilize Pickering emulsions at extremely low concentrations.  相似文献   

19.
In this paper we provide experimental evidence for a phase transition between a liquid- and gas-like phase occurring in an adsorption layer of a soluble surfactant at the air-water interface. The equilibrium surface tension sigma(e) versus bulk concentration sigma(e) (c) isotherm of surface chemically pure sodium 2-[4-(4-trifluoromethyl-phenylazo) phenoxy]-ethane sulfonate was measured at a temperature of 295 K up to the solubility limit of the amphiphile. The sigma(e) (c) isotherm could be fitted by Frumkin's equation of state. The lateral interaction energy is just above the limit for which Frumkin's model predicts a phase transition. The corresponding surface pressure pi versus surface area A isotherm possesses striking similarities to first-order phase transitions in the Langmuir monolayer. The fact that the difference in the two-dimensional density is only a factor of 2 indicates that the system is very close to the critical point. The surface phases were further characterized by surface second harmonic generation. The major structural difference between the two surface phases is the amphiphile's molecular orientation. A mean orientation of the amphiphile of about 80 degrees was found in the gas analogous phase, whereas a molecular tilt of 38 degrees has been identified in the liquid-like phase.  相似文献   

20.
We report observations of the changes in the surface structure of lysozyme adsorbed at the air-water interface produced by the chemical denaturant guanidinium chloride. A primary result is the durability of the adsorbed surface layer to denaturation, as compared to the molecule in the bulk solution. Data on the surface film were obtained from X-ray and neutron reflectivity measurements and modeled simultaneously. The behavior of lysozyme in G.HCl solutions was determined by small-angle X-ray scattering. For the air-water interface, determination of the adsorbed protein layer dimensions shows that at low to moderate denaturant concentrations (up to 2 mol L(-1)), there is no significant distortion of the protein's tertiary structure at the interface, as changes in the orientation of the protein are sufficient to model data. At higher denaturant concentrations, time-dependent multilayer formation occurred, indicating molecular aggregation at the surface. Methodologies to predict the protein orientation at the interface, based on amino acid residues' surface affinities and charge, were critiqued and validated against our experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号