首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The relation between chaotic dynamics of nonlinear Hamiltonian systems and equilibrium statistical mechanics in its canonical ensemble formulation has been investigated for two different nonlinear Hamiltonian systems. We have compared time averages obtained by means of numerical simulations of molecular dynamics type with analytically computed ensemble averages. The numerical simulation of the dynamic counterpart of the canonical ensemble is obtained by considering the behavior of a small part of a given system, described by a microcanonical ensemble, in order to have fluctuations of the energy of the subsystem. The results for the Fermi-Pasta-Ulam model (i.e., a one-dimensional anharmonic solid) show a substantial agreement between time and ensemble averages independent of the degree of stochasticity of the dynamics. On the other hand, a very different behavior is observed for a chain of weakly coupled rotators, where linear exchange effects are absent. In the high-temperature limit (weak coupling) we have a strong disagreement between time and ensemble averages for the specific heat even if the dynamics is chaotic. This behavior is related to the presence of spatially localized chaos, which prevents the complete filling of the accessible phase space of the system. Localized chaos is detected by the distribution of all the characteristic Liapunov exponents.  相似文献   

2.
We present exact analytical solutions to parity-time(P T) symmetric optical system describing light transport in P T-symmetric optical couplers. We show that light intensity oscillates periodically between two waveguides for unbroken P T-symmetric phase, whereas light always leaves the system from the waveguide experiencing gain when light is initially input at either waveguide experiencing gain or waveguide experiencing loss for broken P T-symmetric phase. These analytical results agree with the recent experimental observation reported by Ru¨ter et al. [Nat. Phys.6(2010) 192]. Besides, we present a scheme for manipulating P T symmetry by applying a periodic modulation. Our results provide an efficient way to control light propagation in periodically modulated P T-symmetric system by tuning the modulation amplitude and frequency.  相似文献   

3.
We identify a route towards achieving a negative index of refraction at optical frequencies based on coupling between plasmonic waveguides that support backwards waves. We show how modal symmetry can be exploited in metal-dielectric waveguide pairs to achieve negative refraction of both phase and energy. Control of waveguide coupling yields a metamaterial consisting of a one-dimensional multilayer stack that exhibits an isotropic index of -1 at a free-space wavelength of 400?nm. The concepts developed here may inspire new low-loss metamaterial designs operating close to the metal plasma frequency.  相似文献   

4.
A. Bahrami  A. Rostami  F. Nazari 《Optik》2011,122(20):1787-1790
We propose an all-optical switch (AOS) based on Mach-Zehnder (MZ) and Multi-mode interference (MMI) using nonlinear closely coupled waveguides. The device operates by switching between two states of coupled waveguides. In first state the refractive index of waveguides are same and light field will completely couple to nonlinear waveguide in half length of coupler and will back in the second half. We will have π phase difference in this procedure and the input field will appear in Bar-state output. In the second state the refractive index of nonlinear waveguide increase with high intensity control field. In this case, we have lower coupling and change in phase. But, we choose the best refractive index change to obtain the phase change of multiple of 2π necessary for Cross-state in output. The beam propagation method is used to simulate the device operation.  相似文献   

5.
The problem of the existence of Maxwell's Demon (MD) is formulated for systems with dynamical chaos. Property of stickiness of individual trajectories, anomalous distribution of the Poincare recurrence time, and anomalous (non-Gaussian) transport for a typical system with Hamiltonian chaos results in a possibility to design a situation equivalent to the MD operation. A numerical example demonstrates a possibility to set without expenditure of work a thermodynamically non-equilibrium state between two contacted domains of the phase space lasting for an arbitrarily long time. This result offers a new view of the Hamiltonian chaos and its role in the foundation of statistical mechanics. (c) 1995 American Institute of Physics.  相似文献   

6.
We review some general statistical properties of wave transport through surface disordered waveguides. These systems are shown to present both striking similarities and differences with respect to quasi-one-dimensional waveguides with volume disorder. The statistical properties are analysed using extensive numerical calculations and random matrix theory results. The transport properties are characterized by the statistical behaviour of different transport coefficients that can be defined for both classical (light, microwaves, sound, etc.) and quantum (electrons) waves. In analogy with bulk-disordered systems, the behaviour of the waveguide conductance/resistance (defined for both classical and quantum waves) as a function of the system length defines three different transport regimes: ballistic, diffusive and localization. However, the coupling between waveguide modes presents significant differences with respect to the coupling induced by volume defects. For any incoming mode, there is a strong preference for the forward propagation through the lowest mode. For narrow waveguides, the statistics of reflection coefficients (reflected speckle pattern) present strong finite-size effects which can be surprisingly well described by random matrix theory. Special attention is paid to the fundamental problem of the transition between different regimes. The long-standing problems of the phase randomization process between ballistic and diffusive regimes and the evolution of the conductance statistical distribution in the transition from diffusion (Gaussian statistics) to localization (log normal statistics) are also discussed.  相似文献   

7.
Area-preserving nontwist maps, i.e., maps that violate the twist condition, arise in the study of degenerate Hamiltonian systems for which the standard version of the Kolmogorov-Arnold-Moser (KAM) theorem fails to apply. These maps have found applications in several areas including plasma physics, fluid mechanics, and condensed matter physics. Previous work has limited attention to maps in 2-dimensional phase space. Going beyond these studies, in this paper, we study nontwist maps with many-degrees-of-freedom. We propose a model in which the different degrees of freedom are coupled through a mean-field that evolves self-consistently. Based on the linear stability of period-one and period-two orbits of the coupled maps, we construct coherent states in which the degrees of freedom are synchronized and the mean-field stays nearly fixed. Nontwist systems exhibit global bifurcations in phase space known as separatrix reconnection. Here, we show that the mean-field coupling leads to dynamic, self-consistent reconnection in which transport across invariant curves can take place in the absence of chaos due to changes in the topology of the separatrices. In the context of self-consistent chaotic transport, we study two novel problems: suppression of diffusion and breakup of the shearless curve. For both problems, we construct a macroscopic effective diffusion model with time-dependent diffusivity. Self-consistent transport near criticality is also studied, and it is shown that the threshold for global transport as function of time is a fat-fractal Cantor-type set.  相似文献   

8.

We review some general statistical properties of wave transport through surface disordered waveguides. These systems are shown to present both striking similarities and differences with respect to quasi-one-dimensional waveguides with volume disorder. The statistical properties are analysed using extensive numerical calculations and random matrix theory results. The transport properties are characterized by the statistical behaviour of different transport coefficients that can be defined for both classical (light, microwaves, sound, etc.) and quantum (electrons) waves. In analogy with bulk-disordered systems, the behaviour of the waveguide conductance/resistance (defined for both classical and quantum waves) as a function of the system length defines three different transport regimes: ballistic, diffusive and localization. However, the coupling between waveguide modes presents significant differences with respect to the coupling induced by volume defects. For any incoming mode, there is a strong preference for the forward propagation through the lowest mode. For narrow waveguides, the statistics of reflection coefficients (reflected speckle pattern) present strong finite-size effects which can be surprisingly well described by random matrix theory. Special attention is paid to the fundamental problem of the transition between different regimes. The long-standing problems of the phase randomization process between ballistic and diffusive regimes and the evolution of the conductance statistical distribution in the transition from diffusion (Gaussian statistics) to localization (log normal statistics) are also discussed.  相似文献   

9.
In this article, it is shown that multimode periodic segmented waveguides (PSW) are versatile optical systems in which properties of wave chaos can be highlighted. Numerical wave analysis reveals that structures of quantum phase space of PSW are similar to Poincare? sections which display a mixed phase space where stability islands are surrounded by a chaotic sea. Then, unexpected light behavior can occur such as, input gaussian beams do not diverge during the propagation in a highly multimode waveguide.  相似文献   

10.
赵绚  刘晨  马会丽  冯帅 《物理学报》2017,66(11):114208-114208
基于波导间能量耦合效应的光子晶体功率分束器具有结构紧凑、带宽较宽、弯曲损耗低、分光角度大和不受外界电磁场干扰等优点.本文利用时域有限差分方法,理论研究了二维三角晶格光子晶体耦合波导的功率分束特性,设计得出了一种能够在宽频谱范围内针对不同频率区间实现不同分光比的功能器件.在此基础上通过改变耦合区介质柱形状以及输出分支波导与能量耦合波导的连接位置,最终针对三个相邻频率范围内的入射光信号,较好地实现了三均分、二均分、单一输出通道这3种能量分配输出模式.该功能器件具有透过率对比度高、结构紧凑等特性,对于发展全光功能器件在大规模全光复杂集成领域内的实际应用具有一定的促进作用.  相似文献   

11.
We investigate a photonic crystal (PC) waveguide coupler which is formed by two closely spaced linear waveguides in a two-dimensional triangular lattice of air holes. Our study shows that shifting one row of the air holes between the waveguides affects the dispersion curves of the guided modes and if the triangular lattice of air holes between the waveguides is replaced by a rectangular lattice, this modification results in an ultra-short coupling structure with coupling length less than 3a, where a is the lattice constant. Also, we investigate the effect of changing the radii of air holes that are adjacent to or between the waveguides on the coupling length and show that increasing the radius of air holes between the waveguides decreases the coupling length. We analyze the output spectrum of an ultra-short channel drop filter designed based on this structure.  相似文献   

12.
《Physics letters. A》2020,384(24):126448
We study discrete solitons in zigzag discrete waveguide arrays with different types of linear mixing between nearest-neighbor and next-nearest-neighbor couplings. The waveguide array is constructed from two layers of one-dimensional (1D) waveguide arrays arranged in zigzag form. If we alternately label the number of waveguides between the two layers, the cross-layer couplings (which couple one waveguide in one layer with two adjacent waveguides in the other layer) construct the nearest-neighbor couplings, while the couplings that couple this waveguide with the two nearest-neighbor waveguides in the same layer, i.e., self-layer couplings, contribute the next-nearest-neighbor couplings. Two families of discrete solitons are found when these couplings feature different types of linear mixing. As the total power is increased, a phase transition of the second kind occurs for discrete solitons in one type of setting, which is formed when the nearest-neighbor coupling and next-nearest-neighbor coupling feature positive and negative linear mixing, respectively. The mobilities and collisions of these two families of solitons are discussed systematically throughout the paper, revealing that the width of the soliton plays an important role in its motion. Moreover, the phase transition strongly influences the motions and collisions of the solitons.  相似文献   

13.
The nonprojectable Ho?ava theory at the kinetic-conformal point is defined by setting a specific value of the coupling constant of the kinetic term of the Lagrangian. This formulation has two additional second class-constraints that eliminate the extra mode. We show that the space of solutions of this theory in the Hamiltonian formalism is bigger than the space of solutions in the original Lagrangian formalism. In the Hamiltonian formalism there are certain configurations for the Lagrange multipliers that lead to solutions that cannot be found in the original Lagrangian formulation. We show specific examples in vacuum and with a source. The solution with the source has homogeneous and isotropic spatial hypersurfaces. The enhancement of the space of solutions leaves the possibility that new solutions applicable to cosmology, or to other physical systems, can be found in the Hamiltonian formalism.  相似文献   

14.
Ray in a waveguide can be considered as a trajectory of the corresponding Hamiltonian system, which appears to be chaotic in a nonuniform environment. From the experimental and practical viewpoints, the ray travel time is an important characteristic that, in some way, involves an information about the waveguide condition. It is shown that the ray travel time as a function of the initial momentum and propagation range in the unperturbed waveguide displays a scaling law. Some properties of the ray travel time predicted by this law still persist in periodically nonuniform waveguides with chaotic ray trajectories. As examples we consider few models with special attention to the underwater acoustic waveguide. It is demonstrated for a deep ocean propagation model that even under conditions of ray chaos the ray travel time is determined, to a considerable extent, by the coordinates of the ray endpoints and the number of turning points, i.e., by a topology of the ray path. We show how the closeness of travel times for rays with equal numbers of turning points reveals itself in ray travel time dependencies on the starting momentum and on the depth of the observation point. It has been shown that the same effect is associated with the appearance of the gap between travel times of chaotic and regular rays. The manifestation of the stickiness (the presence of such parts in a chaotic trajectory where the latter exhibits an almost regular behavior) in ray travel times is discussed. (c) 2002 American Institute of Physics.  相似文献   

15.
We study the coupling interaction between dielectric waveguides and coupling elements made from negative-refracting media. The coupling configuration consists of a length of dielectric waveguide, which terminates either directly into or near a planar layer composed of the negative-refracting medium, and is followed by a second waveguide. Radiation output from the first waveguide is refocused at the position of the second waveguide, so that the negative-refracting layer serves as a coupler between the waveguides. Because both isotropic negative-index layers and bilayers of indefinite media can recover the near-field, evanescent components of a source field distribution, the coupling between the input and output waveguides can be highly efficient – in principle providing perfect, lossless coupling. We present simulations and some initial experimental results illustrating the coupling effect, and speculate on the potential for optical fiber couplers and integrated modulators. PACS 42.79.Gn; 41.20.-q; 42.70.-a  相似文献   

16.
The effect of nonlinear transmission in coupled optical waveguide arrays is theoretically investigated and a realistic experimental setup is suggested. The beam is injected in a single boundary waveguide, linear refractive index of which (n(0)) is larger than refractive indexes (n) of other identical waveguides in the array. Particularly, the effect holds if omega(n(0)-n)/c>2Q, where Q is a linear coupling constant between array waveguides, omega is a carrier wave frequency, and c is a light velocity. Numerical experiments show that the energy transfers from the boundary waveguide to the waveguide array above a certain threshold intensity of the injected beam. This effect is due to the creation and the propagation of gap solitons in full analogy with a similar phenomenon in sine-Gordon lattice [Phys. Rev. Lett. 89, 134102 (2002)]].  相似文献   

17.
We experimentally study dispersive shock waves in nonlinear waveguide arrays. In contrast with gap solitons, the nonlinearity here pushes the propagation constant further into the transmission bands, facilitating Bloch mode coupling and energy transport. We directly observe this coupling, both within and between bands, by recording intensity in position space and power spectra in momentum space.  相似文献   

18.
We review the fundamental concepts of quantum chaos in Hamiltonian systems. The quantum evolution of bound systems does not possess the sensitive dependence on initial conditions, and thus no chaotic behaviour occurs, whereas the study of the stationary solutions of the Schrödinger equation in the quantum phase space (Wigner functions) reveals precise analogy of the structure of the classical phase portrait. We analyze the regular eigenstates associated with invariant tori in the classical phase space, and the chaotic eigenstates associated with the classically chaotic regions, and the corresponding energy spectra. The effects of quantum localization of the chaotic eigenstates are treated phenomenologically, resulting in Brody-like level statistics, which can be found also at very high-lying levels, while the coupling between the regular and the irregular eigenstates due to tunneling, and of the corresponding levels, manifests itself only in low-lying levels.  相似文献   

19.
20.
We study directed transport in a classical deterministic dissipative system. We consider the generic case of mixed phase space and show that large ratchet currents can be generated thanks to the presence, in the Hamiltonian limit, of transporting stability islands embedded in the chaotic sea. Because of the simultaneous presence of chaos and dissipation the stationary value of the current is independent of initial conditions, except for initial states with very small measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号