首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alternating patterns of small and large amplitude oscillations occur in a wide variety of physical, chemical, biological, and engineering systems. These mixed-mode oscillations (MMOs) are often found in systems with multiple time scales. Previous differential equation modeling and analysis of MMOs have mainly focused on local mechanisms to explain the small oscillations. Numerical continuation studies reported different MMO patterns based on parameter variation. This paper aims at improving the link between local analysis and numerical simulation. Our starting point is a numerical study of a singular return map for the Koper model which is a prototypical example for MMOs, which also relates to local normal form theory. We demonstrate that many MMO patterns can be understood geometrically by approximating the singular maps with affine and quadratic maps. Motivated by our numerical analysis we use abstract affine and quadratic return map models in combination with two local normal forms that generate small oscillations. Using this decomposition approach we can reproduce many classical MMO patterns and effectively decouple bifurcation parameters for local and global parts of the flow. The overall strategy we employ provides an alternative technique for understanding MMOs.  相似文献   

2.
In the nervous system many behaviorally relevant dynamical processes are characterized by episodes of complex oscillatory states, whose periodicity may be expressed over multiple temporal and spatial scales. In at least some of these instances the variability in oscillatory amplitude and frequency can be explained in terms of deterministic dynamics, rather than being purely noise-driven. Recently interest has increased in studying the application of mixed-mode oscillations (MMOs) to neurophysiological data. MMOs are complex periodic waveforms where each period is comprised of several maxima and minima of different amplitudes. While MMOs might be expected to occur in brain kinetics, only a few examples have been identified thus far. In this article, we review recent theoretical and experimental findings on brain oscillatory rhythms in relation to MMOs, focusing on examples at the single neuron level but also briefly touching on possible instances of the phenomenon across local and global brain networks.  相似文献   

3.
We investigate the dynamics of a population of globally coupled FitzHugh-Nagumo oscillators with a time-periodic coupling strength. While for synchronizing global coupling, the in-phase state is always stable, the oscillators split into several cluster states for desynchronizing global coupling, most commonly in two, irrespective of the coupling strength. This confines the ability of the system to form n:m locked states considerably. The prevalence of two and four cluster states leads to large 2:1 and 4:1 subharmonic resonance regions, while at low coupling strength for a harmonic 1:1 or a superharmonic 1:m time-periodic coupling coefficient, any resonances are absent and the system exhibits nonresonant phase drifting cluster states. Furthermore, in the unforced, globally coupled system the frequency of the oscillators in a cluster state is in general lower than that of the uncoupled oscillator and strongly depends on the coupling strength. Periodic variation of the coupling strength at twice the natural frequency causes each oscillator to keep oscillating with its autonomous oscillation period.  相似文献   

4.
The purpose of this paper is to study the special forms of multimode dynamics that one can observe in systems with resource-mediated coupling, i.e., systems of self-sustained oscillators in which the coupling takes place via the distribution of primary resources that controls the oscillatory state of the individual unit. With this coupling, a spatially inhomogenous state with mixed high and low-amplitude oscillations in the individual units can arise. To examine generic phenomena associated with this type of interaction we consider a chain of resistively coupled electronic oscillators connected to a common power supply. The two-oscillator system displays antiphase synchronization, and it is interesting to note that two-mode oscillations continue to exist outside of the parameter range in which oscillations occur for the individual unit. At low coupling strengths, the multi-oscillator system shows high dimensional quasiperiodicity with little tendency for synchronization. At higher coupling strengths, one typically observes spatial clustering involving a few oscillating units. We describe three different scenarios according to which the cluster can slide along the chain as the bias voltage changes.  相似文献   

5.
6.
Long distance reactive and diffusive coupling is introduced in a spatially extended nonlinear stochastic network of interacting particles. The network serves as a substrate for Lotka-Volterra dynamics with 3rd order nonlinearities. If the network includes only local nearest neighbour interactions, the system organizes into a number of local asynchronous oscillators. It is shown that (a) Introduction of all-to-all coupling in the network leads the system into global, center-type, conservative oscillations as dictated by the mean-field dynamics. (b) Introduction of reactive coupling to the network leads the system to intermittent oscillations where the trajectories stick for short times in bounded regions of space, with subsequent jumps between different bounded regions. (c) Introduction of diffusive coupling to the system does not alter the dynamics for small values of the diffusive coupling pdiff, while after a critical value pdiff c the system synchronizes into a limit cycle with specific frequency, deviating non-trivially from the mean-field center-type behaviour. The frequency of the limit cycle oscillations depends on the reaction rates and on the diffusion coupling. The amplitude σ of the limit cycle depends on the control parameter pdiff.  相似文献   

7.
A noise-induced phase transition to excitability is reported in oscillatory media with FitzHugh-Nagumo dynamics. This transition takes place via a noise-induced stabilization of a deterministically unstable fixed point of the local dynamics, while the overall phase-space structure of the system is maintained. Spatial coupling is required to prevent oscillations through suppression of fluctuations (via clustering in the case of local coupling). Thus, the joint action of coupling and noise leads to a different type of phase transition and results in a stabilization of the system. The resulting regime is shown to display characteristic traits of excitable media, such as stochastic resonance and wave propagation. This effect thus allows the transmission of signals through an otherwise globally oscillating medium.  相似文献   

8.
The Lombardo–Imbihl–Fink (LFI) ODE model of the NO+NH3 reaction on a Pt(1 0 0) surface shows stable relaxation oscillations with very sharp transitions for temperatures T between 404 and 433 K. Here we study numerically the effect of linear diffusive coupling of these oscillators in one spatial dimension. Depending on the parameters and initial conditions we find a rich variety of spatio-temporal patterns which we group into four main regimes: bulk oscillations (BOs), standing waves (SW), phase clusters (PC), and phase waves (PW). Two key ingredients for SW and PC are identified, namely the relaxation type of the ODE oscillations and a nonlocal (and nonglobal) coupling due to relatively fast diffusion of the kinetically slaved variables NH3 and H. In particular, the latter replaces the global coupling through the gas phase used to obtain SW and PC in models of related surface reactions. The PW exist only under the assumption of (relatively) slow diffusion of NH3 and H.  相似文献   

9.
This study endeavours to apply a theoretical model for predicting the dynamics of a bubble cluster of various sizes, within which each bubble may assume different initial conditions from other bubbles in the cluster. The resulting system of coupled Keller-Miksis-Parlitz equations are solved numerically, and the effects of coupling and bubble size on bubble cluster dynamics are examined for a given set of ultrasound parameters. It has been found that the effects of coupling are significant, and a bubble cluster's bifurcation characteristics and route to chaos can be altered by inter-bubble interactions. This gives rise to the possibility of suppressing the chaotic oscillations of microbubbles by varying bubble cluster size. Small equilibrium radii bubbles have little influence on the dynamics of neighbouring bubbles in a cluster via coupling. Furthermore, a bubble system consisting of smaller-sized bubbles transitions from order to chaos at lower driving pressure amplitudes.  相似文献   

10.
Experiments on chaotically oscillating arrays of 64 nickel electrodes in sulfuric acid were carried out. External resistors in parallel and series are added to vary the extent of global coupling among the oscillators without changing the other properties of the system. The array is heterogeneous due to small variations in the properties of the electrodes and there is also a small amount of noise. The addition of global coupling transforms a system of independent elements to a state of complete synchronization. At intermediate coupling strengths stable clusters, or condensates of elements, form. All the elements in a cluster follow the same chaotic trajectory but each cluster has its own dynamics; the system is thus temporally chaotic but spatially ordered. Many cluster configurations occur under the same conditions and transitions among them can be produced. For values of the coupling parameter on either side of the stable cluster region a non-stationary behavior occurs in which clustered and synchronized states alternately form and break up. Some statistical properties of the cluster states are determined. (c) 2000 American Institute of Physics.  相似文献   

11.
宋张代  张林 《物理学报》2013,62(20):204204-204204
光力学系统通常的耦合是光压耦合, 是光场强度和纳米振子位移的一次耦合, 但在光场很强和振子振幅较大的光力学系统中, 非线性的耦合效应会变得非常明显和重要, 而且其所产生的非线性效应对制造具有特殊功能的光力学器件具有重要意义. 本文在二次耦合模型的基础上研究了光腔和振子之间通过二次耦合作用达到能 量平衡状态时系统所产生的自持振荡现象, 给出了二次耦合光力学系统的一般模型, 并通过数值方法研究了系统的定态行为和远离定态的极限环动力学行为, 标定了系统定态响应的稳定区域到极限环行为的分岔点. 发现在调节输入场参数(改变耦合系数)以及光腔和振子的弛豫系数时, 系统的相空间会出现一些稳定的高维自持振荡极限环. 通过数值分析发现该四维极限环在三维相空间的投影都趋于稳定的三维周期轨道, 并且该极限环轨道会随外部调控参数的改变发生扭动, 出现类似二维李萨如图样的稳定纽结结构. 该现象表明: 通过光场与振子的能量耦合, 利用一定强度的外部驱动可以有效控制振子的定态响应和振动, 可以让微振子锁定在具有一定振幅和频率的自发振动上, 为开发物理器件提供了可靠的光力学控制系统. 关键词: 光力系统 二次耦合 自持振荡 极限环  相似文献   

12.
In recent work [J. Rubin and M. Wechselberger, Biol. Cybern. 97, 5 (2007)], we explained the appearance of remarkably slow oscillations in the classical Hodgkin-Huxley (HH) equations, modified by scaling a time constant, using recently developed theory about mixed-mode oscillations (MMOs). This theory is only rigorously valid, however, for epsilon sufficiently small, where epsilon is a parameter that arises from nondimensionalization of the HH system. Here, we illustrate how the parameter regime over which MMOs exist, and the features of the MMO patterns within this regime, vary with respect to several key parameters in the nondimensionalized HH equations, including epsilon. Moreover, we explain our findings in terms of the effects that these parameters are expected to have on certain organizing structures within the corresponding flow, generalized from analysis done previously in the singular limit.  相似文献   

13.
We theoretically study the synchronization between collective oscillations exhibited by two weakly interacting groups of nonidentical phase oscillators with internal and external global sinusoidal couplings of the groups. Coupled amplitude equations describing the collective oscillations of the oscillator groups are obtained by using the Ott-Antonsen ansatz, and then coupled phase equations for the collective oscillations are derived by phase reduction of the amplitude equations. The collective phase coupling function, which determines the dynamics of macroscopic phase differences between the groups, is calculated analytically. We demonstrate that the groups can exhibit effective antiphase collective synchronization even if the microscopic external coupling between individual oscillator pairs belonging to different groups is in-phase, and similarly effective in-phase collective synchronization in spite of microscopic antiphase external coupling between the groups.  相似文献   

14.
We consider open, isothermal and homogeneous two-variable quadratic mass-action systems which exhibit sustained oscillations on an ellipse in phase space [1]. To each system with an elliptic limit cycle there corresponds a conservative one the trajectories of which are curves without contact for the limit cycle system [2]. These trajectories, i.e., the trajectories of all systems oscillating conservatively on an ellipse, are computed analytically. Thus a global stability analysis of every system with an elliptic limit cycle can be performed.  相似文献   

15.
We consider open, isothermal and homogeneous two-variable quadratic mass-action systems which exhibit sustained oscillations on an ellipse in phase space [1]. To each system with an elliptic limit cycle there corresponds a conservative one the trajectories of which are curves without contact for the limit cycle system [2]. These trajectories, i.e., the trajectories of all systems oscillating conservatively on an ellipse, are computed analytically. Thus a global stability analysis of every system with an elliptic limit cycle can be performed.  相似文献   

16.
Synchronized oscillations are of critical functional importance in many biological systems. We show that such oscillations can arise without centralized coordination in a disordered system of electrically coupled excitable and passive cells. Increasing the coupling strength results in waves that lead to coherent periodic activity, exhibiting cluster, local and global synchronization under different conditions. Our results may explain the self-organized transition in a pregnant uterus from transient, localized activity initially to system-wide coherent excitations just before delivery.  相似文献   

17.
We report experimental evidence of transitions from limit cycle oscillations through a phase turbulent regime to space-time defect turbulence in a spatially (quasi-)one-dimensional electrochemical system with nonlocal coupling. The transitions are characterized in terms of the defect density, the Karhunen-Loève decomposition dimension, and a measure of the degree of spatial correlation in the data. Furthermore, these quantities give the first experimental confirmation that the spatial coupling range in electrochemical systems indeed depends on the distance between the working and the counterelectrode.  相似文献   

18.
In this paper, we investigate the coupled behvior of the acoustic field in the confinement and the unsteady flame dynamics in a laboratory scale spray combustor. We study this interaction during the intermittency route to thermoacoustic instability when the location of the flame is varied inside the combustor. As the flame location is changed, the synchronization properties of the coupled acoustic pressure and heat release rate signals change from desynchronized aperiodicity (combustion noise) to phase synchronized periodicity (thermoacoustic instability) through intermittent phase synchronization (intermittency). We also characterize the collective interaction between the multiple flamelets anchored at the flame holder and the acoustic field in the system, during different dynamical states observed in the combustor operation. When the signals are desynchronized, we notice that the flamelets exhibit a steady combustion without the exhibition of a prominent feedback with the acoustic field. In a state of intermittent phase synchronization, we observe the existence of a short-term coupling between the heat release rate and the acoustic field. We notice that the onset of collective synchronization in the oscillations of multiple flamelets and the acoustic field leads to the simultaneous emergence of periodicity in the global dynamics of the system. This collective periodicity in both the subsystems causes enhancement of oscillations during epochs of amplitude growth in the intermittency signal. On the contrary, the weakening of the coupling induces suppression of periodic oscillations during epochs of amplitude decay in the intermittency signal. During phase synchronization, we notice a sustained synchronized movement of all flamelets with the periodicity of the acoustic cycle in the system.  相似文献   

19.
Experiments on the nontrivial collective dynamics and phase synchronization of populations of nonidentical chaotic electrochemical oscillators are presented. Without added coupling no deviation from the law of large numbers is observed. Deviations do arise with weak global or short-range coupling; large, irregular, and periodic mean field oscillations occur along with (partial) phase synchronization.  相似文献   

20.
The Belousov-Zhabotinsky (BZ) reaction can display a rich dynamics when a delayed feedback is applied. We used the Oregonator model of the oscillating BZ reaction to explore the dynamics brought about by a linear delayed feedback. The time-delayed feedback can generate a succession of complex dynamics: period-doubling bifurcation route to chaos; amplitude death; fat, wrinkled, fractal, and broken tori; and mixed-mode oscillations. We observed that this dynamics arises due to a delay-driven transition, or toggling of the system between large and small amplitude oscillations, through a canard bifurcation. We used a combination of numerical bifurcation continuation techniques and other numerical methods to explore the dynamics in the strength of feedback-delay space. We observed that the period-doubling and quasiperiodic route to chaos span a low-dimensional subspace, perhaps due to the trapping of the trajectories in the small amplitude regime near the canard; and the trapped chaotic trajectories get ejected from the small amplitude regime due to a crowding effect to generate chaotic-excitable spikes. We also qualitatively explained the observed dynamics by projecting a three-dimensional phase portrait of the delayed dynamics on the two-dimensional nullclines. This is the first instance in which it is shown that the interaction of delay and canard can bring about complex dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号