首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Caie Lai  Wenyi Ye  Huiyong Liu  Wenji Wang 《Ionics》2009,15(3):389-392
The TiO2-coated LiMn2O4 has been prepared by a carrier transfer method and investigated. This novel synthetic method involved the transfer of TiO2 into the surface of LiMn2O4 with Vulcan XC-72 active carbon powders as a dispersant. The X-ray diffraction shows that spinel structure of materials does not change after the coating of TiO2. The electrochemical performance tests show that the initial discharge capacity of TiO2-modified LiMn2O4 is 111.5 mA h g−1, which is better than that of pristine LiMn2O4 (103.8 mA h g−1). The cyclic performance is significantly improved after surface modification. The TiO2-modified LiMn2O4 by a carrier transfer method exhibits better discharge capability and lower resistance.  相似文献   

2.
Ling Zhao  Enshan Han  Lingzhi Zhu  Yanpu Li 《Ionics》2014,20(8):1193-1200
Cathode material LiMn1.95Co0.05O4 for lithium ion battery was synthesized via solid state reaction, and calcination temperature and time were investigated, respectively. Thermogravimetry (TG) and differential thermal analysis (DTA) measurements were utilized to determine the calcination temperature of precursor sample. The optimized calcination temperature and time are 850 °C and 15 h. The surface of LiMn1.95Co0.05O4 cathode is coated using Al2O3 coating materials. The phase structures, surface morphologies, and element types of the prepared LiMn1.95Co0.05O4 and Al2O3-coated LiMn1.95 Co0.05O4 were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and energy spectrum analysis (EDS). The 0.5 wt% Al2O3-coated compound exhibited better specific capacity and capacity retention than bare sample. The initial discharge capacity was 140.9 mAh/g and capacity retention was 96.7 % after 10 cycles at 0.1 C. Such enhancements are attributed to the presence of a stable Al2O3 layer which acts as the interfacial stabilizer on the surface of LiMn1.95Co0.05O4.  相似文献   

3.
Among several materials (transition metal oxide) under development for use as a cathode in lithium-ion batteries, cubic spinel LiMn2O4 is one of the most promising cathode materials. In this study, the sea urchin-like LiMn2O4 hollow macrospheres were synthesized by using sea urchin-like α-MnO2 precursors through solid-state in situ self-sacrificing conversion route. The as-prepared LiMn2O4 was assembled by many single-crystalline “thorns” of ca.10–20 nm in diameter and ca. 400–500 nm in length. Galvanostatic battery testing showed that sea urchin-like LiMn2O4 had an initial discharge capacity of 126.8 mAh/g at the rate of 0.2 C in the potential range between 3.0 and 4.5 V. More than 96.67 % of the initial discharge capacity was maintained for over 50 cycles. The improved electrochemical properties were attributed to the reduced particle size and enhanced electrical contacts by the materials. This particular sea urchin-like structured composite conceptually provides a new strategy for designing electrodes in energy storage applications.  相似文献   

4.
The effect of heptamethyldisilazane as an electrolyte stabilizer on the cycling performance of a LiMn2O4/Li cell at different rates at 30 °C and the storage performance at 60 °C is investigated systematically based on conductivity test, linear sweep voltage, electrochemical impedance spectroscopy, scanning electron microscopy, X-ray diffraction, and charge–discharge measurements. The results show that heptamethyldisilazane added into the LiPF6-based electrolyte can increase the stability of the original electrolyte; coulomb efficiency, the initial discharge capacity, and cycling performance at different rates in a sense, meanwhile, improve the storage performance at elevated temperature, although the C-rate performance of the cell is a little worse than that without heptamethyldisilazane in the electrolyte. When the LiMn2O4/Li cell with heptamethyldisilazane in the LiPF6-based electrolyte stored at 60 °C for a week cycles 300 times, the capacity retention is up to 91.18 %, which is much higher than that (87.18 %) without the additive in the electrolyte. This is mainly due to the lower solid electrolyte interface resistance (R f) in the cell, followed by the better morphology and structure of the cathode after storage at 60 °C for a week compared with the LiMn2O4/Li cell without heptamethyldisilazane.  相似文献   

5.
Spinel LiMn2O4 suffers from severe dissolution when used as a cathode material in rechargeable Li-ion batteries. To enhance the cycling stability of LiMn2O4, we use the atomic layer deposition (ALD) method to deposit ultrathin and highly conformal Al2O3 coatings (as thin as 0.6–1.2 nm) onto LiMn2O4 cathodes with precise thickness control at atomic scale. Both bare and ALD-coated cathodes are cycled at a specific current of 300 mA g?1 (2.5 C) in a potential range of 3.4–4.5 V (vs. Li/Li+). All ALD-coated cathodes exhibit significantly improved cycleability compared to bare cathodes. Particularly, the cathode coated with six Al2O3 ALD layers (0.9 nm thick) shows the best cycling performance, delivering an initial capacity of 101.5 mA h?g?1 and a final capacity of 96.5 mA h?g?1 after 100 cycles, while bare cathode delivers an initial capacity of 100.6 mA h?g?1 and a final capacity of only 78.6 mA h?g?1. Such enhanced electrochemical performances of ALD-coated cathodes are ascribed to the high-quality ALD oxide coatings that are highly conformal, dense, and complete, and thus protect active material from severe dissolution into electrolytes. Besides, cycling performances of coated cathodes can be easily optimized by accurately tuning coating thickness via varying ALD growth cycles.  相似文献   

6.
Ahmed M. A. Hashem 《Ionics》2004,10(3-4):206-212
The spinel LiMn2O4 is a very promising cathode material with economical and environmental advantages. LiMn2O4 materials have been synthesized by solid state method using γ-MnO2 as manganese source, and Li2CO3 or LiNO3 as Li sources. γ-MnO2 is a commercial battery grade electrolytic manganese dioxide (TOSOH-Hellas GH-S) and LiMn2O4 samples were synthesized at a calcinations temperature up to 800 °C. γ-MnO2 and LiMn2O4 samples were characterized by X-ray diffraction, thermal and electrochemical measurements. X-ray powder diffraction of as prepared LiMn2O4 showed a well-defined highly pure spinel single phase. The electrochemical performance of LiMn2O4 and its starting material γ-MnO2 was evaluated through cyclic voltammetry, galvanostatic (constant current charge-discharge cycling) The electrochemical properties in terms of cycle performance were also discussed. γ-MnO2 showed fairly high initial capacity of about 200 mAhg−1 but poor cycle performance. LiMn2O4 samples showed fairly low initial capacity but good cycle performance.  相似文献   

7.
The surface of spinel LiMn2O4 was modified with Fe2O3 (1.0, 2.0, 3.0, 4.0, and 5.0 wt%) by a simple sol-gel method to improve its electrochemical performance at room temperature. Compared with bare LiMn2O4, surface modification improved cycling stability of the material. Among the surface-modified cathode materials, the 3.0- and 4.0-wt% surface-modified cathodes have lesser capacity loss than the others. While the bare LiMn2O4 showed 25.4 % capacity loss in 70 cycles at room temperature, 3.0 and 4.0 wt% of Fe2O3-modified LiMn2O4 only exhibited the capacity loss of 2.6 and 2.3 % in 70 cycles at room temperature, respectively. The structure and phase were identified with X-ray diffractometer along with the lattice constant calculated by a Win-Metric program.  相似文献   

8.
The power battery was manufactured with the commercial LiMn2O4 and graphite, and its storage performances with different charged state were studied. Structure, morphology, and surface-state change of the LiMn2O4 before and after storage were observed by XRD, SEM, XPS, CV, and AC technique, respectively. The electrochemical performances of LiMn2O4 battery were tested. The result shows that the capacity recovery of LiMn2O4 stored at discharge state is best (99.2%). While that of full-charged state is worst (93.6%). The cyclic performance of LiMn2O4 battery after storage is improved. The cyclic performance of LiMn2O4 stored at full-charged state is best (capacity retention ratio of 89.8% after 200?cycles), while that of before storage is 83.0%. The crystal of the spinel was destroyed after storage, and the intensity of breakage is increased with charge state increasing. The amount of soluble Mn and Li-ion migration resistance (R f) are increased with charge state increasing, and the oxygen loss is detected.  相似文献   

9.
In order to investigate the effect of different electrolytes of LiPF6-based and LiPF6-based with the mixed additives of ethanolamine and heptamethyldisilazane on the storage performance of LiMn2O4, the commercial LiMn2O4 are added into these different electrolytes for storing deliberately at 60 °C in air for 4 h. The results show that the electrolyte with additives can prevent LiMn2O4 from being eroded by HF to a certain extent, and improve the storage performance of the material. The initial discharge capacities are 97.7 and 88.4 mAh g?1 at 0.1 and 1?C, respectively, which are much higher than that 84.4 and 63.6 mAh?g?1 of LiMn2O4 stored in the electrolyte without additives. Moreover, the former LiMn2O4 retains 89.1 % of its initial discharge capacity at 1?C after 150 cycles, while this is not up to 84 % for the latter.  相似文献   

10.
In order to improve the cycle stability of spinel LiMn2O4 electrode at elevated temperature, the LiCoO2-coated and Co-doped LiMn2O4 film were prepared by an electrostatic spray deposition (ESD) technique. LiCoO2-coated LiMn2O4 film shows excellent cycling stability at 55 °C compared to pristine and Co-doped LiMn2O4 films. The samples were studied by X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The excellent performance of LiCoO2-coated LiMn2O4 film can be explained by suppression of Mn dissolution. On the other hand, the LiCoO2-layer on the LiMn2O4 surface allows a homogenous Li+ insertion/extraction during electrochemical cycles and improves its structure stability.  相似文献   

11.
《Solid State Ionics》2006,177(17-18):1477-1481
Methyl propyl carbonate (MPC) is a promising single solvent for lithium-ion battery without addition of ethylene carbonate (EC), but it is unstable upon cycling because of exposure to the spinel LiMn2O4 cathode. Thus, we attempted to add EC to MPC in order to form LiPF6-EC-MPC electrolyte; the effects of solvent ratio and salt concentration on the cycling performance of LiMn2O4 cathode were also investigated. The experiments were characterized by conductivity measurements, charge-discharge at a constant current density and voltage–capacity curves at low temperature. To further enhance our understanding of the performance improvement of LiMn2O4/Li cells, the electrochemical characterization techniques (such as, LSV, EIS) were performed on these cells. The results show that the ionic conductivity of the electrolyte and the cycling performance of the spinel LiMn2O4 cathode have been dramatically enhanced. From the point of view of operation at low temperature (− 20 °C), 1 M LiPF6 EC/MPC (1/3) electrolyte is highly recommended for spinel LiMn2O4 cathode in lithium-ion battery.  相似文献   

12.
ZnO-coated LiMn2O4 cathode materials were prepared by a combustion method using glucose as fuel. The phase structures, size of particles, morphology, and electrochemical performance of pristine and ZnO-coated LiMn2O4 powders are studied in detail by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), galvanostatic charge-discharge test, and X-ray photoelectron spectroscopy (XPS). XRD patterns indicated that surface-modified ZnO have no obvious effect on the bulk structure of the LiMn2O4. TEM and XPS proved ZnO formation on the surface of the LiMn2O4 particles. Galvanostatic charge/discharge test and rate performance showed that the ZnO coating could improve the capacity and cycling performance of LiMn2O4. The 2 wt% ZnO-coated LiMn2O4 sample exhibited an initial discharge capacity of 112.8 mAh g?1 with a capacity retention of 84.1 % after 500 cycles at 0.5 C. Besides, a good rate capability at different current densities from 0.5 to 5.0 C can be acquired. CV and EIS measurements showed that the ZnO coating effectively reduced the impacts of polarization and charge transfer resistance upon cycling.  相似文献   

13.
Uncoated and La2O3-coated LiNiO2 cathode materials were synthesized by polymeric sol gel process using metal nitrate precursors at 600 °C for 10 h. The structure and electrochemical properties of the surface-coated LiNiO2 materials were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry, charge/discharge and electrochemical impedance spectroscopy techniques. X-ray powder diffraction and SEM result show that no significant bulk structural differences were observed between the lanthanum oxide coated and pristine LiMn2O4. The galvanostatic charge/discharge studies on the uncoated and lanthanum oxide-coated LiNiO2-positive material at 0.5-C rate in the potential range between 3 and 4.5 V revealed that lanthanum oxide-coated positive electrode material has enhanced charge/discharge capacities; 2.0 wt.% of lanthanum oxide-coated LiNiO2-positive material has satisfied the structural stability, high reversible capacity and high electrochemical performances.  相似文献   

14.
Zhenye Zhu  Fangyuan Cai  Jie Yu 《Ionics》2016,22(8):1353-1359
Li-rich layered-layered-Spinel structure spherical Li1.3Mn4/6Ni1/6Co1/6O2.40 particles was successfully prepared and coated with a uniform layer by a two-step co-precipitation method and evaluated in lithium cells. The structures and electrochemical properties of pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 and AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 were characterized. When the coating amount was 2 wt%, the cathode showed the best cycling performance and rate capability compared to others. The AlF3-coated Li1.3Mn4/6Ni1/6Co1/6O2.40 Li-ion cell cathode had a capacity retention of 90.07 % after 50 cycles at 0.5 C over 2.0–4.8 V, while the pristine Li1.3Mn4/6Ni1/6Co1/6O2.40 exhibited capacity retention of only 80.73 %. Moreover, the rate capability and cyclic performance also improved. Electrochemical impedance spectroscopy testing revealed that the improved electrochemical performance might attribute to the AlF3 coating layer which can suppress the increase of impedance during the charging and discharging process by preventing direct contact between the highly delithiated active material and electrolyte.  相似文献   

15.
M.W. Raja  S. Mahanty  R.N. Basu 《Solid State Ionics》2009,180(23-25):1261-1266
LiMn2O4 and LiNi0.5Mn1.5O4 powders have been synthesized by a novel cost-effective carbon exo-templating process. It has been observed that controlled nucleation in the pores of highly surface active carbon produces a distinct effect on the powder morphology and crystallinity. Quantitative X-ray phase analyses show single phase spinel structure having Fd3m symmetry for both samples. Field emission electron microscopy reveals particles of size 0.5–1.0 µm with well defined multi-faceted crystals. Cyclic voltammetry results show well separated distinct redox peaks at 4.05/3.92 and 4.17/4.08 V for LiMn2O4/Li and 4.91/4.61 V for LiNi0.5Mn1.5O4/Li coin cells indicating good crystallinity and reversibility of the cathodes compared to that of pristine LiMn2O4 synthesized by conventional combustion process. The LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells deliver an initial discharge capacity of 110 mA h/g and 122 mA h/g respectively at a current density of 0.05 mA/cm2 and when cycled at 0.2 mA/cm2, the cells maintain 81% and 96% of their initial discharge capacity respectively even after 20 cycles. On the other hand, at the same current density, LiMn2O4 synthesized by conventional combustion process suffers from severe capacity fading (only 37.5% capacity retention after the 25th cycle). The capacity fading rate is found to be very less even at further higher current densities (0.4–0.8 mA/cm2) for both LiMn2O4/Li and LiNi0.5Mn1.5O4/Li cells synthesized by the templating process. The present study reveals that high crystallinity along with multi-faceted morphology shows a remarkable enhancement in capacity as well as rate performance of pristine LiMn2O4 and its Ni derivative.  相似文献   

16.
LiMn2O4 (LMO) is a very attractive choice as cathode material for power lithium-ion batteries due to its economical and environmental advantages. However, LiMn2O4 in the 4-V region suffers from a poor cycling behavior. Recent research results confirm that modification by coating is an important method to achieve improved electrochemical performance of LMO, and the latest progress was reviewed in the paper. The surface treatment of LMO by coating oxides and nonoxide systems could decrease the surface area to retard the side reactions between the electrode and electrolyte and to further diminish the Mn dissolution during cycling test. At present, LiMn2O4 is the mainstreaming cathode material of power lithium-ion battery, and, especially the modified LMO, is the trend of development of power lithium-ion battery cathode material in the long term.  相似文献   

17.
LiMn2O4-based Li-ion cells suffer from a limited cycle-life and a poor storage performance at 55 °C, both in their charged and discharged states. To get some insight on the origin of the poor 55 °C storage performance, the voltage distribution through plastic Li-ion cells during electrochemical testing was monitored by means of 3-electrode type measurements. From these measurements, coupled with chemical analysis, X-ray diffraction and microscopy studies, one unambiguously concludes that the poor performance of LiMn2O4/C-cells at 55 °C in their discharged state is due to enhanced Mn dissolution that increases with increasing both the temperature and the electrolyte HF content. These results were confirmed by a chemical approach which consists in placing a fresh LiMn2O4 electrode into a 55 °C electrolyte solution. A mechanism, based on an ion-exchange reaction leading to the Mn dissolution is proposed to account for the poor storage performance of LiMn2O4/C Li-ion cells in their discharged state. In order to minimize the Mn dissolution, two surface treatments were performed. The first one consists in applying an inorganic borate glass composition to the LiMn2O4 surface, the second one in using an acetylacetone complexing agent. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

18.
Thin SiO2 shell consisting of nano-SiO2 particles can be deposited on to LiMn2O4 through the facile hydrolysis of tetraethoxysilane (TEOS) as a solution in either methanol or ethanol. The structure and surface morphologies of the modified and pristine materials were characterized by means of X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The choice of solvent (methanol vs. ethanol) for TEOS hydrolysis has a profound effect on the physical and electrochemical properties of the resultant SiO2-coated LiMn2O4. Coated LiMn2O4 demonstrated an improved cycling ability compared to the uncoated counterpart. Moreover, samples coated using a TEOS–methanol solution showed better cycling ability in extended potential windows and at an elevated temperature than that coated using ethanol.  相似文献   

19.
An attempt has been made to synthesize LiMn2O4 spinel and boron substituted LiMn2O4 with atomic concentration of boron ranging from 0.01–0.20 and using glutaric acid as a chelating agent. The spinels have been characterized using PXRD, CV and galvanostatic charge-discharge studies. The precursor obtained from the glutaric acid assisted gel was calcined initially at 300 °C for 4 h to obtain the compound and finally at 800 °C for 4 h so as to obtain homogeneity, high degree of purity and crystallinity for better electrochemical performance. This paper suggests that glutaric acid assisted B3+ doped (LiBxMn2−xO4) spinel was found to be as an apt candidate with good electrochemical performance for use in lithium battery.  相似文献   

20.
Thin films of spinel LiMn2O4 have been fabricated using a metallorganic precursor. Crystalline films have been deposited on Au substrates to exhibit as the cathode in rechargeable thin film lithium batteries. The nucleation and growth of spinel LiMn2O4 crystallites were investigated with heat treatment of the deposited thin films. Film capacity density as high as 22 μAh/cm2 was measured for LiMn2O4. The film heat treated at 700 °C were cycled electrochemically up to 30 cycles against Li metal without any degradation of the capacity. There were neither open area nor amorphous layers which prevent the Li+ions transfer at the boundaries in the LiMn2O4 thin film. The microscopic study revealed that (111) planes in the two grains directly bonded at the grain boundary which could proceed the lithium ion intercalation or deintercalation smoothly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号