首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The blood-oxygenation-level-dependent (BOLD) signal is an indirect hemodynamic signal that is sensitive to cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen. Therefore, the BOLD signal amplitude and dynamics cannot be interpreted unambiguously without additional physiological measurements, and thus, there remains a need for a functional magnetic resonance imaging (fMRI) signal, which is more closely related to the underlying neuronal activity. In this study, we measured CBF with continuous arterial spin labeling, CBV with an exogenous contrast agent and BOLD combined with intracortical electrophysiological recording in the primary visual cortex of the anesthetized monkey. During inhalation of 6% CO2, it was observed that CBF and CBV are not further increased by a visual stimulus, although baseline CBF for 6% CO2 is below the maximal value of CBF. In contrast, the electrophysiological response to the stimulation was found to be preserved during hypercapnia. As a consequence, the simultaneously measured BOLD signal responds negatively to a visual stimulation for 6% CO2 inhalation in the same voxels responding positively during normocapnia. These observations suggest that the fMRI response to a sensory stimulus for 6% CO2 inhalation occurs in the absence of a hemodynamic response, and it therefore directly reflects oxygen extraction into the tissue.  相似文献   

2.
Luo Z  Wang Z  Yuan Z  Du C  Pan Y 《Optics letters》2008,33(10):1156-1158
A dual-imaging modality is demonstrated for high-resolution quantitative imaging of local cerebral blood flow in the rat cortex by combining simultaneous spectral-domain Doppler optical coherence tomography (SDOCT) and full-field laser speckle contrast imaging (LSCI). Preliminary studies in tissue flow phantom and cocaine-induced cerebral blood flow changes indicated that by correlating coregistered cortical arterial blood flow, the relative measurement of flow changes by LSCI could be accurately calibrated by the absolute flow imaging provided by SDOCT (least square fit, r(2) approximately 0.96). Quantitative LSCI of cerebral blood flow is crucial to the quantitative analyses of the spatiotemporal hemodynamics of functional brain activations and thus improved understanding of neural process.  相似文献   

3.
The hypercapnia induced by carbogen (95% O(2)/5% CO(2)) breathing, which is being re-evaluated as a clinical radiosensitiser, causes patient discomfort and hence poor compliance. Recent preclinical and clinical studies have indicated that the CO(2) content might be lowered without compromising increased tumour oxygenation and radiosensitisation. This preclinical study was designed to see if lower levels of hypercapnia could evoke similar decreases in the transverse relaxation rate R(2)* of rodent tumours to those seen with carbogen breathing. The response of rat GH3 prolactinomas to 1%, 212% and 5% CO(2) in oxygen, and 100% O(2) breathing, was monitored by non-invasive multi-gradient echo MRI to quantify R(2)*. As the oxygenation of haemoglobin is proportional to the blood p(a)O(2) and therefore in equilibrium with tissue pO(2), R(2)* is a sensitive indicator of tissue oxygenation. Hyperoxia alone decreased R(2)* by 13%, whilst all three hypercapnic hyperoxic gases decreased R(2)* by 29%. Breathing 1% CO(2) in oxygen evoked the same decrease in R(2)* as carbogen. The DeltaR(2)* response is primarily consistent with an increase in blood oxygenation, though localised increases in tumour blood flow were also identified in response to hypercapnia. The data support the concept that levels of hypercapnia can be reduced without loss of enhanced oxygenation and hence potential radiotherapeutic benefit.  相似文献   

4.
太空辐射尤其是重离子辐射可造成DNA的破坏、细胞死亡、以及一些癌症的发生,是人类深空探索进程中急需克服的难题. 本文通过重离子加速器产生12C6+重离子束对大鼠头部进行一定剂量的辐射,模拟空间重离子辐射对中枢神经系统(CNS)的生物学效应. 采用基于1H NMR的代谢组学方法对辐射大鼠大脑额叶皮质区进行了测定分析,结合数据的统计分析和检验,发现了包括一些重要CNS神经递质在内的代谢物含量发生明显变化. 这些代谢物主要为:牛磺酸、乳酸、谷氨酸、4-氨基丁酸、以及磷酸胆碱等. 结合差异蛋白质组结果分析,包括4-氨基丁酸、谷氨酸、乳酸、牛磺酸等在内的代谢物参与的主要生物途径,如神经递质的合成途径,以及神经递质受体介导的信号途径可能受重离子辐射的负面影响. 这些发现将为进一步阐明重离子辐射效应的分子机制提供有利信息,从而为从生物学途径探寻有效重离子辐射防护措施提供依据.  相似文献   

5.
PurposeThis study aimed to clarify the resting-state cerebral blood flow alteration patterns induced by primary dysmenorrhea, investigate the relationships between cerebral blood flow alterations and clinical parameters of patients with primary dysmenorrhea, and explore whether brain regions with abnormal cerebral blood flow also feature functional connectivity changes.MethodsArterial spin labeling imaging and clinical parameters were acquired in 42 patients with primary dysmenorrhea and 41 healthy controls during their menstrual phases. Differences in cerebral blood flow were compared between the two groups, and the clusters with significant group differences were selected as the regions of interest for further statistical analyses.ResultsCompared to healthy controls, patients with primary dysmenorrhea exhibited increased cerebral blood flow in the bilateral precuneus, left posterior cingulate cortex, and right rolandic operculum. Among patients with primary dysmenorrhea, we identified a negative correlation between the cerebral blood flow in the right rolandic operculum and the visual analogue score for anxiety, and greater correlation between the functional connectivity in the precuneus/posterior cingulate cortex and the right middle cingulate cortex, and between the right rolandic operculum and the left inferior parietal lobule and the bilateral postcentral gyrus.DiscussionCerebral blood flow abnormalities associated with primary dysmenorrhea were mainly concentrated in the areas comprising the default mode network in primary dysmenorrhea patients, which could be involved in the central mechanism of primary dysmenorrhea. Cerebral blood flow alteration in the rolandic operculum may underlie an anxiety-induced compulsive tendency in patients with primary dysmenorrhea. Investigating the enhanced connectivity among various pain-related brain regions could improve understanding of the onset and development of primary dysmenorrhea.  相似文献   

6.
The effect of high dose isoflurane on cerebral blood flow (CBF) was investigated in adult macaque monkeys receiving 1% to 2% isoflurane with the pseudo continuous arterial-spin-labeling (pCASL) MRI technique. High concentration (2%) of isoflurane resulted in significant increase in the mean CBF of the global, cortical, subcortical regions and the regional CBF in all subcortical structures and most cortical structures (such as motor cortex, anterior cingulate cortex, but not media prefrontal cortex). In addition, the changes of regional CBF in the affected regions correlated linearly with increasing isoflurane concentrations. The study demonstrates region-specific CBF abnormal increase in adult macaque monkeys under high dose (2%) isoflurane and suggests that the brain functionality in the corresponding structures may be affected and need to be taken consideration in either human or non-human primate neuroimaging studies.  相似文献   

7.
It has been recognized that primary blast waves may result in neurotrauma in soldiers in theater. A new type of contrast used in magnetic resonance imaging (MRI), susceptibility-weighted imaging (SWI), has been developed that is based on the different susceptibility levels in diverse tissues and can detect decreases in cerebral blood flow (CBF) using inferred oxygen saturation changes in tissue. In addition, a continuous arterial spin-labeled (ASL) MRI sequence was used as a direct measure of regional CBF within the brain tissue. Animals were subjected to whole-body blast exposures of various overpressures within a gas-driven shock tube. When exposed to low levels of overpressure, most rats demonstrated no obvious changes between pre- and postexposure in the conventional MR images. CBF changes measured by SWI and ASL were significantly higher for the overpressure exposed groups as compared to the sham group and tended to increase with pressure increases at the highest two pressures. In the hippocampus, all blast animals had a reduction in the CBF consistently in the range of 0-27%. In summary, low levels of primary blast pressure exposure demonstrated a significant physiologic effect to the brain up to 72 h postexposure.  相似文献   

8.
In functional magnetic resonance imaging (fMRI) studies, an elevation in blood pressure (BP) in individuals with a poor autoregulatory response may increase cerebral blood flow, potentially enhancing the blood oxygenation level dependent response. To investigate the role of BP changes, the cerebral activation to either tonic pain or the infusion of the vasopressor norepinephrine was correlated with the accompanying BP changes in alpha-chloralose anesthetized rats. Immediately after formalin (2%) injection into the forepaw, fMRI detected an activation that was correlated with the BP increase and additional activations that were independent of blood pressure changes 5–40 minutes later. The activation detected with the administration of the vasopressor norepinephrine, which does not cross the blood-brain barrier was correlated to both the amount and rate of increase in BP. The response ranged from being sparse, localized within cortex or widespread during modest, moderate or severe elevations in BP, respectively. The cerebral circulatory effects of hypertension should be considered as contributing to changes in cerebral blood oxygenation in fMRI studies involving increases in BP.  相似文献   

9.
Autoradiographic studies have shown that low dose ketamine produces increases in regional glucose utilisation and blood flow in the hippocampus, cerebral cortex, and olfactory lobe in the rat brain, probably due to antagonism at the NMDA receptor. Functional MRI using deoxyhaemoglobin contrast can be used to study changes in regional cerebral blood flow (rCBF). Long TE gradient-echo sequences were used to study changes in rCBF produced by low dose ketamine in rats anaesthetised with nitrous oxide, supplemented with either halothane (HAL) or fentanyl/fluanisone/midazolam (FFM) combination. Images from rats in the FFM group showed a 10–14% increase in signal intensity in the hippocampus, cerebral cortex, and olfactory lobe following either a single bolus or a low dose infusion of ketamine (p < .05). These changes were significantly reduced in the HAL group (p < .005). Halothane is known to attenuate the changes in regional glucose utilisation produced by the noncompetitive NMDA antagonist dizocilpine (MK-801), and its effects on ketamine-induced changes in rCBF seen in this study may be due to a similar effect. The potential use of functional MRI in studying the effect of pharmacological interventions on rCBF is discussed.  相似文献   

10.
The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.  相似文献   

11.
We investigated the regional and temporal changes in cerebral blood volume (CBV), cerebral blood flow (CBF), and vascular transit time in seven mongrel cats during 30 min transient focal ischemia, caused by occlusion of the middle cerebral artery. Dynamic susceptibility contrast magnetic resonance imaging was done at 4.7 T, using fast gradient echo T21 weighted imaging and intravenous injection of gadolinium-BOPTA/Dimeglumine. During occlusion, the areas showing a blood volume change were predominantly within the middle cerebral artery territory and could be divided into areas showing either CBV increases or decreases. The area with decreased blood volume also had decreased blood flow as measured by our flow-based index (p < 0.05) and was located in the central territory of the middle cerebral artery. Peripheral to this region was an area showing increased blood volume but without significant CBF changes (p > 0.05). During reperfusion, the CBF increased in the entire zone showing changes in blood volume during occlusion, and remained significantly elevated until 45 min post-occlusion, while CBV remained elevated in the hyperemic rim for at least 2 h. The presence of a peri-ischemic zone showing flow/volume mismatch identified a region wherein baseline CBF is maintained by means of compensatory vasodilatation, but where the ratio of CBF to CBV is decreased. Dynamic susceptibility contrast magnetic resonance imaging with gadolinium-BOPTA/Dimeglumine may be a valuable technique for the investigation of regional and temporal perturbations of hemodynamics during ischemia and reperfusion.  相似文献   

12.
OBJECTIVE: Hydrocephalus is an important etiological factor in neurological decline. With the advent of fetal ultrasound, fetal hydrocephalus is now more frequently detected than in the past. Ultrasonography (USG) provides information on general morphology, but microstructural changes that may play a prognostic role are beyond the resolution of that technique. These changes may theoretically be revealed by diffusion-weighted magnetic resonance imaging (DW-MRI). In this study, our preliminary findings of DW-MRI on the hydrocephalic fetuses are presented. MATERIALS AND METHODS: Twelve fetuses with fetal USG diagnosis of hydrocephalus were investigated using a 1.5-T MR scanner. In addition to conventional techniques, DWI was performed. It was obtained using a single-shot echo-planar imaging sequence (TR/TE: 4393/81 ms; slice thickness: 5 mm; interslice gap: 1 mm; FOV: 230 mm; matrix size: 128x256; b values: 0 and 1000 s/mm2). Apparent diffusion coefficient (ADC) values were measured in the white matter of the periventricular frontal and occipital lobes, basal ganglia, thalamus, centrum semiovale and cerebrospinal fluid in the lateral ventricle. These values were compared with the normal prenatal ADC values from a radiological study published in the literature. RESULTS: All fetuses had moderate or severe bilateral supratentorial ventricular dilatation that was compatible with hydrocephalus. On conventional T1- and T2-weighted imaging, cerebral parenchyma had normal signal pattern and ADC values were significantly lower than those reported for fetuses with normal brain. These values were lower in hydrocephalic fetuses with statistical significance (P<.05-.01). CONCLUSION: DWI is a sensitive technique to investigate cerebral microstructure. The reduction in cerebral blood flow and alterations in cerebral energy metabolism in cases with hydrocephalus have been shown before. Changes in cerebral blood flow and energy metabolism, as a consequence of cerebral compression, may occur in hydrocephalus. Elevated ventricular pressure may cause cerebral ischemia. The anaerobic glycolysis seen in the hydrocephalic brain tissue by increasing the lactate concentration and intracellular fluid flux may be the reason for the reduced ADC values in hydrocephalic fetuses. However, long-term prospective trials on the correlation of ADC values and neurological outcome are necessary to exploit the full benefit of that novel technique.  相似文献   

13.
Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized γ-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the γ-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.  相似文献   

14.

Background  

By mapping the dynamics of brain reorganization, functional magnetic resonance imaging MRI (fMRI) has allowed for significant progress in understanding cerebral plasticity phenomena after a stroke. However, cerebro-vascular diseases can affect blood oxygen level dependent (BOLD) signal. Cerebral autoregulation is a primary function of cerebral hemodynamics, which allows to maintain a relatively constant blood flow despite changes in arterial blood pressure and perfusion pressure. Cerebral autoregulation is reported to become less effective in the early phases post-stroke.  相似文献   

15.
近红外空间分辨光谱技术及其对新生猪脑缺氧缺血的检测   总被引:2,自引:0,他引:2  
近红外光谱(NIRS)技术作为一种无创的组织氧检测手段,近年来在脑缺氧缺血的检测方面日益受到重视。文章介绍了自行研制的NIRS仪器(TSAH-100近红外组织血氧无损监测仪)的基本原理及用于新生猪脑氧检测时如何实现传感器与待测脑组织的最佳耦合。检测了28例新生猪在不同氧合状态下的脑组织氧饱和度(regional cerebral oxygen saturation, rSO2),在缺氧结束后进行了有创的动脉氧饱和度及生理参数的检测。结果表明,NIRS无创测得的脑rSO2与血气分析有创测得的动脉血氧饱和度(SaO2)有很好的相关性(p<0.001),并且脑rSO2与缺氧程度及缺氧后生理参数的变化一致。因此NIRS无创测得的脑rSO2能直接判断脑氧合状态,可在一定情况下替代有创血气分析,帮助临床无创、简便地诊断脑缺氧缺血。  相似文献   

16.
A mathematical model that characterizes the response of venous oxygenation to changes in cerebral blood flow (rCBF) and oxygen consumption has been previously presented. We use this model to examine the dampening phenomenon in functional MRI (fMRI) signals with rapidly alternating periodic stimulation bursts. Using a mass balance approach, the equations for an input-output model are derived and solved using Matlab (the Math Works Inc.). Changes in venous oxygenation are related to the results of fMRI experiments using progressively shorter periods of stimulation. An impulse-response function for the model is derived in an attempt to explore the source of the lag in cerebral hemodynamics. Increasing the frequency of stimulation bursts eventually produces a dampening in the fMRI signal. The dampening phenomenon in fMRI signals occurs with stimulation of high frequency on-off alternation. The dynamics of signal dampening, as well as the impulse-response function of a blood oxygen level-dependent model, lend strong indirect support to the hypothesis that blood oxygen level-dependent contrast at the level of the venous blood pool, rather than R1 inflow effects or changes in oxygenation at the level of the capillary bed, underlies the observed signal changes in fMRI.  相似文献   

17.
The purpose of this project was to assess the reliability of the cerebral mean transit time (MTT) obtained using perfusion-weighted MR imaging by comparing it with the MTT obtained when performing positron emission tomography (PET). Ten patients with chronic occlusive cerebrovascular disease were investigated. They had either unilateral internal carotid artery occlusion or middle cerebral artery occlusion. The regions-of-interest were placed in non-infarcted areas within the territory of the middle cerebral artery on the affected side. Control regions-of-interest were placed in mirrored regions of the contralateral side. Linear regression analyses were performed using the parameters of the MTT obtained with perfusion-weighted MR imaging and the MTT, cerebral blood flow, vascular reactivity, and oxygen extraction fraction obtained with PET. The respective MTTs of the affected and non-affected sides obtained with perfusion-weighted MR imaging versus those with PET were 7.3 +/- 2.2 s and 6.0 +/- 1.2 s versus 8.2 +/- 3.0 s and 6.4 +/- 1.7 s. The MTT obtained using perfusion-weighted MR imaging and PET demonstrated statistically significant correlation (r = 0.87, p < 0.0001). The MTT obtained with perfusion-weighted MR imaging correlated statistically with cerebral blood flow (r = -0.74, p < 0.001), vascular reactivity (r = -0.73, p < 0.001) and oxygen extraction fraction (r = 0.61, p < 0.01). Similarly, the MTT obtained using PET statistically correlated with cerebral blood flow (r = -0.78, p < 0.0001), vascular reactivity (r = -0.51, p < 0.05) and oxygen extraction fraction (r = 0.68, p < 0.01). The reliability of the MTT obtained using perfusion-weighted MR imaging appears to be approximately equal to that obtained with positron emission tomography.  相似文献   

18.
Arterial spin labeling (ASL) perfusion fMRI data differ in important respects from the more familiar blood oxygen level-dependent (BOLD) fMRI data and require specific processing strategies. In this paper, we examined several factors that may influence ASL data analysis, including data storage bit resolution, motion correction, preprocessing for cerebral blood flow (CBF) calculations and nuisance covariate modeling. Continuous ASL data were collected at 3 T from 10 subjects while they performed a simple sensorimotor task with an epoch length of 48 s. These data were then analyzed using systematic variations of the factors listed above to identify the approach that yielded optimal signal detection for task activation. Improvements in statistical power were found for use of at least 10 bits for data storage at 3 T. No significant difference was found in motor cortex regarding using simple subtraction or sinc subtraction, but the former presented minor but significantly (P<.024) larger peak t value in visual cortex. While artifactual head motion patterns were observed in synthetic data and background-suppressed ASL data when label/control images were realigned to a common target, independent realignment of label and control images did not yield significant improvements in activation in the sensorimotor data. It was also found that CBF calculations should be performed prior to spatial normalization and that modeling of global fluctuations yielded significantly increased peak t value in motor cortex. The implementation of all ASL data processing approaches is easily accomplished within an open-source toolbox, ASLtbx, and is advocated for most perfusion fMRI data sets.  相似文献   

19.
Study on cerebral microcirculation by Optical Doppler Tomography   总被引:1,自引:0,他引:1  
Optical Doppler Tomography (ODT) provides a novel method to measure the blood flow velocity in vessels with the diameter at micrometer scale. Rats with cranial window are used as a model, and the changes in the blood flow velocity of cerebral arterioles in sensory cortex are measured in real time with an established ODT system, under electrical stimulation and drug administration. The results show significant differences in the blood flow velocity between experimental groups and control groups, demonstrating the feasibility of ODT in the cerebral microcirculation study. Compared with the conventional Doppler ultrasound, ODT provides much higher spatial resolution, and thus holds a promising future in the application of the cerebral microcirculation study, especially in the observation of the blood flow velocity in micrometer scale vessels. Supported by the National Hi-Tech Research and Development Program of China (863 Program)(Grant No. 2006AA02Z4E0), the National Natural Science Foundation of China (Grant Nos. 60378041, 60478040, 60878057 and 30770685), the Program for New Century Excellent Talents in University (Grant No. NCET-04-0528), and the Opening Project of MOE Key Laboratory of Laser Life Science, South China Normal University  相似文献   

20.
临床上脑血流量(cerebral blood flow, CBF)等脑血管血流动力学参数是脑血氧水平及脑血管储备功能诊断依据,现有检测手段存在技术复杂及相应试剂或设备不适用于所有诊断人群等缺点。为解决以上问题,利用近红外光谱技术(NIRS)结合吲哚青绿(indocyanine green, ICG)脉搏色素浓度法,研究了一种无创、快速、可重复测量的脑血流量床旁检测方法NIRS-ICG。该方法根据静脉注射ICG后脑组织及脑动脉血流中三种主要吸光色团氧合血红蛋白(oxygenated hemoglobin, HbO2)、还原血红蛋白(reduced hemoglobin, HbR)及ICG的浓度变化情况,建立脑组织及脑动脉血流中ICG积累量及引入量模型,以获得脑血氧及CBF等脑血流动力学参数。为验证该方法的可行性,将NIRS-ICG应用于血碳酸正常及高碳酸血症病理模型的实验猪的脑血流情况检测。具体方法是:分别对四组实验猪用按0%,3%,6%,9%比例调制的CO2和空气混合气体施行机械通气,静脉快速推注ICG后,利用NIRS-ICG方法测量CBF、脑动脉血氧饱和度(cerebral arterial oxygen saturation, SaO2)及脑血管管床平均循环时间(mean transit time, MTT)。实验结果表明,NIRS-ICG测得的CBF随CO2比率升高而升高,SaO2随着CO2比例的升高而降低,MTT并无显著变化,与生理变化一致。因此,该方法可为脑血氧及脑血管储备功能诊断提供可靠依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号