首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated donor-like defects in ZnO substrate material grown by three different methods, and in epitaxial ZnO thin films grown on sapphire by pulsed laser deposition. Temperature dependent Hall effect measurements yield information about dominant donors. The thermal activation energies lie in a wide range from about 20 meV to about 370 meV. Deep level transient spectroscopy is used to obtain parameters of deep donor-like defects. For that, a high-speed diode contact configuration was laid out for the epitaxial thin films in order to determine the defect parameters with high precision. The identified levels are E1, E3 and E4, though the level E4 is observed only in single crystals grown by seeded chemical vapor transport. PACS 72.10.Fk; 72.80.Ey; 73.50.-h  相似文献   

2.
ZnO/MgO core–shell nanorod arrays were synthesized successfully by the hydrothermal growth method. Photoluminescence (PL) emission from the nanorods showed remarkable enhancement after the growth of the MgO layer. The ZnO/MgO core–shell nanorods are type-I heterostructures, the electrons and holes of which are both confined in the core of the nanorods, as a result, leading to the increase of the photoluminescence intensity in this system. In addition, another reason for the enhancement of PL emission was the deposition of MgO shell suppression of surface defects. In addition, the activation energy (E a) of 63 meV in the ZnO/MgO core–shell nanorods was obtained from temperature-dependent PL.  相似文献   

3.
In order to improve photovoltaic performance of solar cells based on ZnTe thin films two device structures have been proposed and its photovoltaic parameters have been numerically simulated using Solar Cell Capacitance Simulator software. The first one is the ZnO/CdS/ZnTe conventional structure and the second one is the ZnO/CdS/ZnTe/P+-ZnTe structure with a P+-ZnTe layer inserted at the back surface of ZnTe active layer to produce a back surface field effect which could reduce back carrier recombination and thus increase the photovoltaic conversion efficiency of cells. The effect of ZnO, CdS and ZnTe layer thicknesses and the P+-ZnTe added layer and its thickness have been optimized for producing maximum working parameters such as: open-circuit voltage Voc, short-circuit current density Jsc, fill factor FF, photovoltaic conversion efficiency η. The solar cell with ZnTe/P+-ZnTe junction showed remarkably higher conversion efficiency over the conventional solar cell based on ZnTe layer and the conversion efficiency of the ZnO/CdS/ZnTe/P+-ZnTe solar cell was found to be dependent on ZnTe and P+-ZnTe layer thicknesses. The optimization of ZnTe, CdS and ZnTe layers and the inserting of P+-ZnTe back surface layer results in an enhancement of the energy conversion efficiency since its maximum has increased from 10% for ZnO, CdS and ZnTe layer thicknesses of 0.05, 0.08 and 2 µm, respectively to 13.37% when ZnO, CdS, ZnTe and P+-ZnTe layer thicknesses are closed to 0.03, 0.03, 0.5 and 0.1 µm, respectively. Furthermore, the highest calculated output parameters have been Jsc?=?9.35 mA/cm2, Voc?=?1.81 V, η?=?13.37% and FF?=?79.05% achieved with ZnO, CdS, ZnTe, and P+-ZnTe layer thicknesses about 0.03, 0.03, 0.5 and 0.1 µm, respectively. Finally, the spectral response in the long-wavelength region for ZnO/CdS/ZnTe solar cells has decreased at the increase of back surface recombination velocity. However, it has exhibited a red shift and showed no dependence of back surface recombination velocity for ZnO/CdS/ZnTe/P?+?-ZnTe solar cells.  相似文献   

4.
The microwave-synthesized zinc-oxide (ZnO) nanonorods of average length of ~ 1500 nm and diameter ~ 100 nm were irradiated with 6.5 meV electrons. From sample to sample, the electron fluence was varied over the range 5×1014 to 2.5×1015 e-cm?2. The pre- and post-electron-irradiated ZnO nanorods were characterized by X-ray diffraction, UV–VIS, EDAX, scanning electron microscopy, transmission electron microscopy, and BET methods. The results show that after electron irradiation, the ZnO nanorods could retain the hexagonal phase with the wurtzite structure; however, the average length of the ZnO nanorods reduced to ~ 800 nm. Moreover, the oxygen atoms from a fraction of ZnO molecules were dislodged, and the process contributed to the formation of Zn–ZnO mixed phase, with increased zinc to oxygen ratio. In the photo-degradation of Rhodamine-B, a significant enhancement in the photocatalytic activity of the electron-irradiated ZnO nanorods was observed. This could be attributed to the induced defects, reduced dimensions, and increased surface area of the ZnO nanorods, in addition to the formation of the Zn–ZnO phase. All these could collectively contribute to the effective separation of the photogenerated electrons from the holes on the ZnO nanorods, and therefore enhance the photocatalytic activity under UV exposure.  相似文献   

5.
Hydrogen shallow donors in sol-gel-derived pristine and rare-earth Y-doped ZnO nanoparticles have been investigated by electron paramagnetic resonance (EPR) and high-resolution 1H nuclear magnetic resonance (NMR). It is shown by EPR measurements that the energy level of the hydrogen shallow donors in the Y-doped ZnO is much deeper (E ~ 174 meV) than in the pristine ZnO (E ~ 75 meV). The temperature-dependent 1H NMR chemical shift and linewidth measurements of the pristine and the Y-doped ZnO systems indicated that Y-doping effectively modifies the lattice environment and hinders the hydrogen motions in the ZnO nanoparticles.  相似文献   

6.
ZnO是一种新型宽禁带直接带隙Ⅱ-Ⅵ族半导体材料,室温激子束缚能高达60meV,远大于室温热离化能(26meV),因此ZnO是适于室温或更高温度下使用的高效紫外光电材料。ZnO半导体量子点材料与体材料相比具有崭新的光电特性,特别在紫外激光器件方面,与ZnO的激子特性密切相关,因此理论上对ZnO量子点中激子的基态特性进行研究就显得十分必要。采用有效质量近似(EMA)方法,提出新的比较简单的尝试波函数,对ZnO量子点中激子的基态特性进行了计算。计算结果与实验结果基本吻合,说明我们的计算结果比较真实、有效。对变分参数KeKh,归一化常数NeNh以及波函数ψ随粒径变化关系进行了计算。计算结果表明,当量子点半径较小(r≤4.0aB)时,激子的波函数ψ变化非常迅速,而由于此时量子点具有很大的比表面积,因此量子点所处的环境、体内的缺陷、杂质会对其产生非常强烈的影响,同时其表面(界面)的介质会对其基态特性产生影响,因此对量子点进行有效的修饰与掺杂以减少其表面缺陷及表面悬键,减少无辐射复合与界面发射是非常必要的。  相似文献   

7.
We employed epi-GaN substrates for ZnO film growth, and studied the deposition and post-annealing effects. ZnO films were grown by pulsed laser deposition (PLD) method. The as-grown films were annealed for one hour under atmospheric pressure air. ZnO morphologies after annealing were investigated and the post-annealed ZnO films grown at T g =700oC have very smooth surfaces and the rms with roughness is about 0.5 nm. Finally, ZnO post-annealed buffer layer was inserted between ZnO epilayer and GaN/sapphire substrates. It is confirmed by AFM that growth temperature of 700oC helps the films grow in step-flow growth mode. It is observed by cathode luminescence spectrum that the ZnO film grown at 700oC has very low visible luminescence, indicating the decrease of the deep level defects. It is also revealed by Hall measurements that carrier concentration is decreased by increasing the growth temperatures. It is suggested that low temperature buffer layer growth and post-annealing technique can be used to fabricate ZnO hetero-epitaxy.  相似文献   

8.
《Current Applied Physics》2014,14(4):621-629
Various zinc precursors, such as zinc acetate, zinc nitrate, zinc sulfate, and zinc chloride, have been used to control the formation of zinc oxide (ZnO) nanostructures onto aluminum substrate by chemical means. FESEM images of the ZnO nanostructures showed the formation of different morphologies, such as flakes, nanowalls, nanopetals, and nanodisks, when the nanostructures were synthesized using zinc acetate, zinc nitrate, zinc sulfate, and zinc chloride precursors, respectively. The TEM image of disk-like ZnO nanostructures formed using zinc chloride as a precursor revealed hexagonally shaped particles with an average diameter of 0.5 μm. Room-temperature photoluminescence (PL) spectra revealed a large quantity of surface oxygen defects in ZnO nanodisks grown from zinc chloride compared with those using other precursors. Furthermore, the ZnO nanostructures were evaluated for photocatalytic activity under ultraviolet (UV) light illumination. Nanostructures having a disk-like shape exhibited the highest photocatalytic performance (k = 0.027 min−1) for all the ZnO nanostructures studied. Improved photocatalytic activity of ZnO nanodisks was attributed to their large specific surface area (4.83 m2 g−1), surface oxygen defects, and super-hydrophilic nature of their surface, which is particularly suitable for dye adsorption.  相似文献   

9.
Morphological, electrostatic, and optical techniques reveal spontaneous growth of nano-“mounds” on ZnO polar surfaces in air creating native point defects at and under the surface that increase work function locally by hundreds of meV. Nanoscale surface photovoltage spectroscopy reveals Zn vacancies with gap states whose density grows with nano-mound proximity over hundreds of nanometers. The low activation energy for ZnO nano-mound growth with oxygen indicates interstitial Zn diffusion that feeds nanostructure growth, generating deep level acceptors that increase n-type band bending and impact Schottky barrier formation.  相似文献   

10.
Photo- and thermally stimulated luminescence of ZnO ceramics are produced by uniaxial hot pressing. The luminescence spectra of ceramics contain a wide band with a maximum at 500 nm, for which oxygen vacancies VO are responsible, and a narrow band with a maximum at 385 nm, which is of exciton nature. It follows from luminescence excitation spectra that the exciton energy is transferred to luminescence centers in ZnO. An analysis of the thermally stimulated luminescence curves allowed detection of a set of discrete levels of point defects with activation energies of 25, 45, 510, 590 meV, and defects with continuous energy distributions in the range of 50–100 meV. The parameters of some of the detected defects are characteristic of a lithium impurity and hydrogen centers. The photoluminescence kinetics are studied in a wide temperature range.  相似文献   

11.
《Current Applied Physics》2014,14(3):521-527
Intrinsic defects in semiconductors play crucial roles on their electrical and optical properties. In this article, we report on a facile method to control concentration of oxygen vacancies inside ZnO nanostructures and related physical properties based on adjustment of thermal transformation conditions from ZnO2 to ZnO, including annealing atmosphere and temperature. ZnO2 spheres assembled with nanoparticles were formed through the reaction between zinc nitrate and hydrogen peroxide. Significantly, it was found that the adopted temperature and atmosphere have remarkable impact on the concentration of oxygen vacancies, which was revealed by the variations of featured Raman scattering peaks at 584 cm−1. Furthermore, with the increase of oxygen vacancies inside ZnO, the optical band-gap was found to red-shift 350 meV and the room-temperature ferromagnetism became stronger up to 1.6 emu/mg. The defect formation and evolution were discussed according to the chemical equilibrium of decomposition reaction under special local heating environment. This work demonstrated that ZnO2 decomposition is an effective process to control the defect states inside ZnO and related properties.  相似文献   

12.
Uniform ZnO nanobelts (NBs) were synthesized by a facile thermal evaporation method. Recombination mechanism of acceptor-related emissions in Sb doped ZnO NBs was investigated by temperature-dependent photoluminescence (PL) spectra. UV near-band-edge (NBE) emissions were dominant by acceptor-bound exciton (A0X) at 3.358 eV and free electron-to-acceptor (FA) at 3.322 eV transitions at 81 K. Studies on A0X intensity showed a quenching channel, the thermal dissociations of A0X to a free exciton and electron hole pair with the temperature increase. The active energy of A0X was estimated to be 19 meV using thermal quenching formula. The acceptor ionization energy was calculated to be 190 meV using Haynes rule. These results were very similar to those of antimony or phosphorus doped ZnO films.  相似文献   

13.
In this work, a high performance impedance-type humidity sensor based on Europium-doped ZnO with abundant surface oxygen vacancy defects was synthesized by sol-gel method. Response of the Eu-doped ZnO with different molar ratio were investigated by exposing them to humidity environments in wide range of 11–95% RH at room temperature. The Eu-doped ZnO (2?mol%) exhibits a three orders impedance change, along with short response/recovery time (5?s/19?s), low hysteresis and best linearity. Complex impedance spectra indicates that dopant Eu can enhance humidity sensing performance of ZnO, which is resulted from the introduction of Eu3+ ions into ZnO structure to produce more defects of surface oxygen vacancy and more active sites on the surface of ZnO. The results show that this is a feasible method to achieve high humidity sensing performance by Eu doped ZnO, which make it a promising candidate for humidity sensing materials and broaden the use of ZnO materials.  相似文献   

14.
L.J. Sun  J. Hu  H.Y. He  X.P. Wu  X.Q. Xu  B.X. Lin  Z.X. Fu  B.C. Pan   《Solid State Communications》2009,149(39-40):1663-1665
Ag–S codoped ZnO thin films have been fabricated on Si substrates by radio frequency (RF) magnetron sputtering using a thermal oxidation method. XRD and SEM measurements showed that the sample has hexagonal wurtzite structure with a preferential (002) orientation and the surface is composed of compact and uniform grains. AgZnnSO defect complexes were observed in the Ag–S codoped ZnO films by XPS analysis. Low temperature PL spectra showed neutral acceptor bound exciton emission related to AgZnnSO. The corresponding acceptor ionization energy of 150 meV is much lower than that of monodoped Ag (246 meV), which is favorable for p-type doping of ZnO.  相似文献   

15.
We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8±0.3) meV that has been suggested as Zni related and possibly H-complex related and (54.5±0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, XZn. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) [1]. Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60×1017 cm−3 at 200 °C to 4.37×1018 cm-3 at 800 °C.  相似文献   

16.
焦宝臣  张晓丹  魏长春  孙建  倪牮  赵颖 《中国物理 B》2011,20(3):37306-037306
Indium doped zinc oxide(ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate.1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated.The 1 at.% indium doped single-layers have triangle grains.The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10-3Ω·cm and particle grains.The doublelayers structure is designed to fabricate the ZnO:In thin film with low resistivity(2.58×10-3Ω·cm) and good surface morphology.It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substratelayer,and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film.Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region.Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated.  相似文献   

17.
Shuttle-like ZnO nano/microrods were successfully synthesized via a low temperature (80 °C), “green” (without any organic solvent or surfactant) and simple hydrothermal process in the solution of zinc chloride and ammonia water. X-ray diffraction and Raman spectroscopy indicated that the ZnO nano/microrods are a well-crystallized hexagonal wurtzite structure. Yet photoluminescence analysis showed that abundant intrinsic defects (52.97% electron donor defects and 45.49% electron acceptor defects) exist on the surface of ZnO crystals. Gas sensors based on the shuttle-like ZnO nano/microrods exhibited high sensitivity, rapid response-recovery and good selectivity to formaldehyde in the range of 10-1000 ppm at an optimum operating temperature of 400 °C. Through applying linear fitting to the plot of sensitivity versus formaldehyde concentration in logarithmic forms, the chemisorbed oxygen species on the ZnO surface were found to be O2− (highly active among O2, O2 and O species). Notably, formaldehyde can be easily distinguished from acetaldehyde with a selectivity of about 3. The high formaldehyde sensitivity is mainly attributed to the synergistic effect of abundant electron donor defects (52.97%) and highly active oxidants (surface adsorbed O2− species) co-existed on the surfaces of ZnO.  相似文献   

18.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

19.
Red, green, blue (RGB) selective zinc oxide (ZnO) phototransistors with multi-photoactive quantum-dot (QD) channels have been fabricated by a charge-assisted layer-by-layer (LbL) patterning process. QDs were patterned as RGB pixels in multi-photoactive QD channels through the LbL process. The solution-processed ZnO film, which acts as an active-channel layer of the ZnO TFTs, is patterned via a photoinduced surface engineering method to reduce the leakage current of the ZnO TFTs. The average off-current of the patterned ZnO TFTs reduced from 10?10 to 10?11 A. QDs absorb visible light and generate photoelectrons, which are then transferred to the ZnO to produce photocurrents. The device shows photoresponsivity of 9.4 mA/W, 12.5, and 137 A/W to the illumination of 638, 520, and 405 nm wavelength light. Our results suggest a promising way to develop an RGB selective phototransistor that uses QDs as a visible light absorption layer and ZnO as an active channel semiconductor.  相似文献   

20.
The possible formation of ZnO nanocrystals was studied as a result of radiolysis of a ZnSe crystal surface exposed to zinc vapor and irradiated with gamma rays and in producing ZnSe-ZnO heterostructures. Under 60Co gamma radiation in air, nanocrystals ~27 nm in size are formed from nanoscopic ZnO nuclei. Under a mixed flux of gamma rays and thermal-neutron radiation, a twin structure is formed in the host ZnSe lattice and ZnO is removed. The oxide layer is also destroyed under proton irradiation in vacuum. It is found that the growth of ZnO nanocrystallites causes a manyfold increase in the luminescence intensity in the ~600-nm band and in microhardness and also a decrease in the resistance and blocking and threshold voltages irrespective of polarity. Thus, gamma irradiation brings about the formation of light-emitting ZnSe-ZnO: Zn semiconductor structures with a p-n junction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号