首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ZnO薄膜的椭偏和DLTS特性   总被引:2,自引:1,他引:1  
用射频磁控溅射在硅衬底上淀积氧化锌薄膜,并对样品分别作氮气、空气、氧气等不同条件下退火处理。为研究退火气氛对ZnO/Si薄膜中缺陷以及折射率的影响,由深能级瞬态谱(DLTS)以及椭偏测量方法进行了检测。椭偏测量结果表明相对原始生长的样品,在氮气和空气退火使ZnO薄膜折射率下降,但氧气中退火使折射率升高。我们对折射率的这种变化机理进行了解释。DLTS测量得到一个与Zni**相关的深能级中心E1存在,氧气气氛退火可以消除E1能级。在氮气退火情况下Zn*i*的存在对抑制VO引起的薄膜折射率下降有利。  相似文献   

2.
We report deep level transient spectroscopy results from ZnO layers grown on silicon by molecular beam epitaxy(MBE). The hot probe measurements reveal mixed conductivity in the as-grown ZnO layers, and the current–voltage(I–V)measurements demonstrate a good quality p-type Schottky device. A new deep acceptor level is observed in the ZnO layer having activation energy of 0.49±0.03 eV and capture cross-section of 8.57×10-18cm2. Based on the results from Raman spectroscopy, photoluminescence, and secondary ion mass spectroscopy(SIMS) of the ZnO layer, the observed acceptor trap level is tentatively attributed to a nitrogen–zinc vacancy complex in ZnO.  相似文献   

3.
AlN-Si(111)异质结构界面陷阱态研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用Al_AlN_Si(111) MIS结构电容_频率谱研究了金属有机化学气相沉积法生长的 Si 基AlN的AlN_Si异质结构中的电荷陷阱态. 揭示了AlN_Si异质结构界面电荷陷阱态以及A lN层中的分立陷阱中心. 结果指出:AlN层中存在E_t-E_v=2.55eV的分立陷阱中心;AlN_Si界面陷阱态在Si能隙范围内呈连续分布,带中央态密度最低,N_ss为8×10^11eV^-1cm^-2,对应的时间常数τ为8×10^-4s ,俘获截面σn为1.58×10^-14cm^2;在AlN界面层存在三种陷阱 态,导致Al_AlN_Si异质结构积累区电容的频散. 关键词: 界面陷阱态 AlN-Si 电容-频率谱  相似文献   

4.
We investigated the optical properties and electrical properties of N-doped ZnO layers grown on (0 0 0 1) GaN/Al2O3 substrates by molecular beam epitaxy, employing 10 K photoluminescence (PL) measurements, current–voltage (IV) measurements, capacitance–voltage (CV) measurements, and 100 K photocapacitance (PHCAP) measurements. 10 K PL spectra showed that excitonic emission is dominant in N-doped ZnO layers grown after O-plasma exposure, while overall PL emission intensity is significantly reduced and deep level emission at around 2.0 2.2 eV is dominant in N-doped ZnO layers grown after Zn exposure. IV and CV measurements showed that N-doped ZnO layers grown after Zn exposure have better Schottky diode characteristics than O-plasma exposed samples, and an N-doped ZnO layer grown at 300 °C after Zn exposure has best Schottky diode characteristics. This phenomenon is presumably due to lowered background electron concentration induced by the incorporation of N. PHCAP measurements for the N-doped ZnO layer revealed several midgap trap centers at 1.2 1.8 eV below conduction band minimum.  相似文献   

5.
Interaction of low-energy nitrogen ions with ZnO surface has been studied by photoemission spectroscopy (PES) around N 1s core-level and near-edge X-ray absorption fine structure (NEXAFS) around N K-edge. Nitrogen can break Zn-O bonds at the surface and form N-O, Zn-N or Zn-N-O bonds, characterised by specific chemical shifts in PES or absorption peaks in NEXAFS. A distinctive signal from molecular nitrogen has also been observed in ion-bombarded samples in both NEXAFS and PES.  相似文献   

6.
We use superconducting Al-tunnel junctions as tunable phonon generators in the meV-range to determine ground state splitting at zero stress of positively charged states associated with single acceptors in Si and double acceptors in Ge. From the stress and energy dependence of the conductivity induced by high frequency phonon irradiation of the corresponding two- and three-hole states we find that the splitting is below 0.1 meV for the ground states of Si:B+ and Ge:Be+, and 1 meV and 1.2 meV for Si:Ga+ and Si:Al+, respectively. These level separations are comparable to those found previously for the ground states of the corresponding acceptor bound excitons A0X. For the deeper acceptors Si:In+, Si:Tl+, and Ge:Zn+ the results are qualitatively different.  相似文献   

7.
Wurtzite zinc oxide (ZnO) nanochains have been synthesized through high-pressure pulsed laser deposition. The chain-like ZnO nanostructures were obtained from magnesium (Mg) doped ZnO targets, whereas vertically aligned nanorods were obtained from primitive ZnO targets. The Mg doping has influenced the morphological transition of ZnO nanostructures from nanorods to nanochains. The field emission scanning electron microscope images revealed the growth of beaded ZnO nanochains. The ZnO nanochains of different diameters 40 and 120 nm were obtained. The corresponding micro-Raman spectra showed strong E2H mode of ZnO, which confirmed the good crystallinity of the nanochains. In addition to near band edge emission at 3.28 eV, ZnO nanochains show broad deep level emission at 2.42 eV than that of ZnO nanorods.  相似文献   

8.
Combined scanning tunneling microscopy, reflection electron energy loss spectroscopy and X-ray photoelectron studies have been performed in situ under ultra high vacuum condition, on tetraphenylporphyrin molecules (H2TPP) vacuum sublimated on highly oriented pyrolitic graphite. The experimental studies were performed at room temperature, as a function of the amount of deposited porphyrins.The propensity of H2TPP to self-assembly on the graphite surface could be detected after a threshold of deposited material. In this case tetraphenylporphyrin molecules arranged according to a quasi-hexagonal lattice separated from their nearest neighbours by a minimum distance of about 1 nm. The formation of an additional incomplete layer, at a slightly higher coverage, was also detected where the quasi-hexagonal symmetry is retained. Finally, subsequent tetraphenylporphyrins depositions gave molecular aggregates randomly distributed on the graphite surface with subsequent loss of order.  相似文献   

9.
D-H. Woo  Y-H. Yoon  I.C. Jeon 《Surface science》2007,601(6):1554-1559
We have studied the electron tunneling process through an electrochemical scanning tunneling microscopic (STM) junction formed by a gold tip and a gold electrode immersed in an inert NaClO4 solution. Current-distance-voltage characteristics of the tunneling process are examined by simultaneous measurement of tunneling current, voltage, and distance. The results indicate that the tunneling voltage across the junction changes with tunneling distance; however, tunneling conductance is an inverse exponential function of distance over the entire investigated range of tunneling current, voltage, and distance. The results provide clear evidence for the validity of a one-dimensional tunneling model for the aqueous tunneling process. Implications of the observation are mentioned with regard to the distance-dependent STM imaging and the origin of a low tunneling barrier height.  相似文献   

10.
本文对GaN HEMT栅漏电容的频率色散特性进行分析,认为栅边缘电容的色散是导致栅漏电容频率色散特性不同于圆肖特基二极管电容的主要原因. 通过对不同栅偏置条件下缺陷附加电容与频率关系的拟合,发现小栅压下的缺陷附加电容仅满足单能级缺陷模型,而强反向栅压下的缺陷附加电容同时满足单能级和连续能级缺陷模型. 实验中栅边缘电容的频率色散现象在钝化工艺后出现,其反映的缺陷很可能是钝化工艺引入,且位于源漏间栅金属未覆盖区域的表面. 最后通过低频噪声技术进一步验证栅边缘电容提取缺陷参数的可行性. 低频噪声技术获得的单能级 关键词: HEMT 边缘电容 缺陷 低频噪声  相似文献   

11.
The influence of the host-crystal deformation on the acceptor wave-function in a cubic crystal is considered. The calculations are based on the numerical solution of the Luttinger Hamiltonian for a hole in a complex valence band. The deformation is taken into account using Bir-Pikus Hamiltonian for the deformation. The results can be used for the interpretation of the STM images in strained cubic crystals.  相似文献   

12.
The interaction between the metallic film/island and the semiconductor substrate is important to the electronic properties of metallic nanostructure grown on semiconductor substrate. Here, we report a series of comparison experiments to investigate the effect of doping concentration of Si substrates on the quantum well state (QWS). Using scanning tunneling microscopy, we observed that the apparent QWS energy positions show a strong dependence on the substrate used and on the sample temperature. Further experimental results by varying the height of scanning tunneling microscope tip over the Pb island uncovered that the observed apparent QWS energy position changes mainly come from the partial bias voltage drop on the combined resistance of the Pb wetting layer and the substrate, which is comparable with the vacuum tunneling resistance at low temperatures.  相似文献   

13.
Fe-doped ZnO film has been grown by laser molecular beam epitaxy (L-MBE) and structurally characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), all of which reveal the high quality of the film. No secondary phase was detected. Resonant photoemission spectroscopy (RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band. A strong resonant effect at a photon energy of 710 eV is observed. Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~ 8 eV. There are no electronic states related to Fe near the Fermi level. Magnetic measurements reveal a typical superparamagnetic property at room temperature. The absence of electronic states related to Fe near the Fermi level and the high quality of the film, with few defects, provide little support to ferromagnetism.  相似文献   

14.
Rectifying contact formation on n-type bulk single crystal ZnO using novel W2B or W2B5 metallization schemes was studied using current-voltage, scanning electron microscopy and Auger electron spectroscopy (AES) measurements. When a single Au overlayer was used to reduce the metal sheet resistance, the contacts were ohmic for all annealing conditions due to outdiffusion of Zn through the metal. By sharp contrast, when a bilayer of Pt/Au was used on top of the boride layers, rectifying contacts with barrier heights of ∼0.4 eV for W2B were obtained. The highest barrier height of 0.66 eV was achieved for W2B5 annealed at 600 °C, although at this condition the contact showed a reacted appearance and AES showed almost complete intermixing of the metallization.  相似文献   

15.
Using low-temperature scanning tunneling microscopy/spectroscopy we have developed a method for measuring electrostatic potential in high spatial and energy resolutions, and performed a real-space observation of the potential screened by two-dimensional surface electrons around step edges, where extra charges are localized, on the Si(1 1 1)√3 × √3-Ag surface. In the potential images, characteristic decay and the Friedel oscillation were clearly observed around the charges.  相似文献   

16.
ZnO/ZnO:Mn core-shell nanowires were studied by means of X-ray absorption spectroscopy of the Mn K- and L2,3-edges and electron energy loss spectroscopy of the O K-edge. The combination of conventional X-ray and nanofocused electron spectroscopies together with advanced theoretical analysis turned out to be fruitful for the clear identification of the Mn phase in the volume of the core-shell structures. Theoretical simulations of spectra, performed using the full-potential linear augmented plane wave approach, confirm that the shell of the nanowires, grown by the pulsed laser deposition method, is a real dilute magnetic semiconductor with Mn2+ atoms at the Zn sites, while the core is pure ZnO.  相似文献   

17.
Fe-doped ZnO film has been grown by laser molecular beam epitaxy(L-MBE) and structurally characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM),all of which reveal the high quality of the film.No secondary phase was detected.Resonant photoemission spectroscopy(RPES) with photon energies around the Fe 2p-3d absorption edge is performed to detect the electronic structure in the valence band.A strong resonant effect at a photon energy of 710 eV is observed.Fe3+ is the only valence state of Fe ions in the film and the Fe 3d electronic states are concentrated at binding energies of about 3.8 eV and 7 eV~8 eV.There are no electronic states related to Fe near the Fermi level.Magnetic measurements reveal a typical superparamagnetic property at room temperature.The absence of electronic states related to Fe near the Fermi level and the high quality of the film,with few defects,provide little support to ferromagnetism.  相似文献   

18.
A new miniature scanning tunneling microscope (STM) holder was developed in order to simultaneously investigate electronic conductance and structure of nanowires in an ultra high-vacuum electron microscope (UHV-TEM). A thin gold wire held between the STM tip and substrate stage of the specimen holder was stretched to form a suspended gold nanowire. The new TEM-STM system allowed us to measure electronic conductance at intervals of 20 ms, and to record high-resolution TEM images on videotape at 30 fps. Suspended gold nanowires formed from [1 1 0] oriented electrodes were well-elongated. In contrast, [1 0 0] and [1 1 1] electrodes produced nanowires with short necks. Electronic conductance was found to change as nanowire structure changed, with conductance quantization in units of 2e2/h, where e is the electron charge and h is Planck’s constant, only being exhibited for well-elongated nanowires.  相似文献   

19.
A. Sulyok  M. Menyhard 《Surface science》2007,601(8):1857-1861
The steady-state surface compositions of the polar (O and Zn terminated) faces of ZnO{0 0 0 1} produced by low energy (0.3-2 keV) Ar+ ion bombardment were studied by Auger electron spectroscopy and electron energy loss spectroscopy. The alterations produced by the ion bombardment using different ion energies were monitored by calculating the intensity ratios of the low and high energy Zn Auger peaks (59 eV and 994 eV, respectively); Zn and O Auger peaks (59 eV and 510 eV, respectively). Based on the dependence of these ratios on the ion energy and termination of the surface, we could conclude that the stability of the Zn face is higher against the low energy argon ion bombardment-induced compositional changes than that of the O face.  相似文献   

20.
The temperature dependence of the minority carrier diffusion length and lifetime in bulk n-type ZnO was studied using Electron-Beam-Induced Current (EBIC) and cathodoluminescence (CL) techniques. The diffusion length was observed to increase exponentially over the temperature range from 25 to 125 C, yielding an activation energy of 45 ± 2 meV. A concomitant decrease of the cathodoluminescence intensity for the near-band-edge transition was also observed. The activation energy determined by optical measurements was 58 ± 7 meV. The larger minority carrier diffusion length and smaller luminescence intensity are attributed to the increased lifetime of non-equilibrium holes in the valence band at elevated temperatures. Carrier trapping on Li-related levels with activation energy 283 ± 9 meV is also addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号