首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We reported previously activity and activity coefficient data for aqueous solutions of 18-crown-6 (18C6) in the concentration range of 0.1–2.0 mol-kg−1 at 298.15 K. The results were interpreted in terms of the binding of four water molecules (two bridged and two singly H-bonded) inside the 18C6 cavity having a D3d conformation. In this work, we report our thermodynamic analysis of the Gibbs energy and enthalpy data (obtained using enthalpy virial data from literature) in aqueous solutions of 18C6 at 298.15 K. The excess enthalpy and Gibbs energy parameters are computed and further used to obtain excess entropies of solutions as a function of 18C6 concentration. The same data are utilized to compute the partial molar entropies of solvent and solute at finite, as well as at infinite, dilution of 18C6 in water. It is observed that ΔGmix, ΔHmix and TΔSmix values are all negative, whereas ΔGE values show a slightly positive variation as a function of the 18C6 concentration. The partial molar excess entropy of water, ( , decreases (becomes negative) whereas that of 18C6, ( , increases with a increase in the 18C6 concentration. These results are explained in terms of various effects, which include water structure making, incorporation of water molecules in the crown cavities and crown–crown hydrophobic interactions, which persist even at the lowest concentration studied.  相似文献   

2.
Osmotic vapor pressure and density measurements have been carried out for binary aqueous and ternary aqueous solutions containing a fixed concentration of 18-crown-6 (0.2 mol⋅kg−1) and ammonium chloride or ammonium bromide at 298.15 K. The concentration of the ammonium salts was varied between 0.02 to 0.5 mol⋅kg−1. The measured water activities were used to obtain the activity coefficient of water and the mean molal activity coefficient of the ions in binary as well as ternary solutions. Using the method developed by Patil and Dagade reported earlier in this journal and the McMillan-Meyer pair and triplet Gibbs energy interaction parameters, the thermodynamic equilibrium constant (K) for the 18-crown-6:NH4 + complexes were determined. It is observed that the nature and polarizability of anions play important roles in imparting stability to the complexed species. The log10 K values for the 18-crown-6:NH4 + complexed species are lower than for the complexes involving alkali metal ions such as K+. The volume of complexation for the studied systems obtained from the apparent molar volumes of ammonium halides in ternary solutions are positive and of smaller magnitude than those reported for complexation with alkali ions. The results are further discussed in terms of water structural effects, complex formation, the role of counter anions and hydrophobic interactions.  相似文献   

3.
Osmotic vapor pressure measurements have been carried out for three ternary systems, H2O + 0.2 m 18-crown-6 + LiCl, H2O + 0.2 m 18-crown-6 + NaCl and H2O + 0.2 m 18-crown-6 + KCl at 298.15 K using vapor pressure osmometry. Water activities for each ternary system were measured and used to calculate the activity coefficients of 18-crown-6 (18C6) and its salts following the methodology developed by Robinson and Stokes for isopiestic measurements. In the concentration range studied, it was found that (in NaCl and KCl solutions) there is considerable lowering of activity coefficients of one component in the presence of other solutes that has been attributed to the formation of the complexed 18C6:Na+ (or 18C6:K+) species in solution. The Gibbs energies of transfer of alkali chlorides from water to aqueous 18C6 solutions and that of 18C6 from water to aqueous electrolyte solutions have been calculated. These were further used to evaluate the pair and triplet interaction parameters. The calculation of thermodynamic equilibrium constants using the pair interaction parameter, g NE (i.e., the nonelectrolyte–electrolyte pair interaction) for the studied complexation of cations yields values which are in good agreement with those reported in literature obtained by using ion-selective potentiometry and calorimetry. The results are discussed in terms of water structural effects, complex formation, and hydrophobic interactions.  相似文献   

4.
The apparent molar volumes, V φ , of glycine, L-alanine and L-serine were obtained in aqueous 0 to ∼4 mol⋅kg−1 N,N-dimethylacetamide (DMA) solutions from density measurements at 298.15 and 308.15 K. The standard partial molar volume, V φ o, and standard partial molar volumes of transfer, Δtr V φ o, were determined for these amino acids. It has been shown that hydrophilic-hydrophilic interactions between charged groups of the amino acids and the —CON= group of DMA are predominant in the case of glycine and L-serine, but for L-alanine the interactions between its side group (—CH3) and DMA are predominant. An increase in temperature increases the standard partial molar volumes but decreases the transfer volumes of the amino acids. The results have been interpreted in terms of cosphere overlap model.  相似文献   

5.
We have measured the densities at temperatures T = (278.15 to 363.15) K and heat capacities at T = (278.15 to 393.15) K of aqueous solutions of 18-crown-6 and of (18-crown-6 + KCl) at molalities m = (0.02 to 0.3) mol · kg−1 and at the pressure 0.35 MPa. We have calculated apparent molar volumes V? and apparent molar heat capacities Cp,? for 18-crown-6(aq), and we have applied Young’s Rule and have accounted for chemical speciation and relaxation effects to resolve V? and Cp,? for the (18-crown-6: K+,Cl)(aq) complex in the mixture. We have also calculated estimates of the change in volume ΔrVm, the change in heat capacity ΔrCp,m, the change in enthalpy ΔrHm, and the equilibrium quotient log Q for formation of the complex at T = (278.15 to 393.15) K and m = (0 to 0.3) mol · kg−1.  相似文献   

6.
Experimental measurements of the speed of sound, density and osmotic vapour pressure are reported for binary 18-Crown-6 (18C6) + CH3OH, KBr + CH3OH and ternary KBr + 18C6 + CH3OH solutions at 298.15 K. The density and compressibility data were processed to obtain the apparent molar volume (ø V ) and apparent molar isentropic compressibility ( $\phi _{K_S } Experimental measurements of the speed of sound, density and osmotic vapour pressure are reported for binary 18-Crown-6 (18C6) + CH3OH, KBr + CH3OH and ternary KBr + 18C6 + CH3OH solutions at 298.15 K. The density and compressibility data were processed to obtain the apparent molar volume (? V ) and apparent molar isentropic compressibility () of the solutes in methanol. Expansivity data were obtained for the 18C6 + CH3OH system from density data at different temperatures and were used for calculation of the isothermal compressibility values at 298.15 K. The isothermal compressibility and expansivity data are further used to obtain the apparent molar isothermal compressibility () and apparent molar expansivity (? E ) of 18C6 in methanolic solutions and as well as the energy-volume coefficient parameter (∂ U/∂ V) T in methanol solutions. The volume and compressibility changes due to complexation of KBr with 18C6 are obtained at infinite dilution for ? V and ? K . The results are compared with the similar data obtained by us previously for aqueous and CCl4 solutions. The osmotic coefficient data were used to calculate activities and activity coefficients of each component at 298.15 K as a function of the concentration of binary and ternary methanolic solutions containing KBr and 18C6. The activity and activity coefficient data are used to evaluate the pair and triplet interaction parameters by making appropriate use of the McMillan-Meyer theory of solutions. The calculation of the thermodynamic equilibrium constant (K) is made using the pair interaction parameter, g NE (non-electrolyte – electrolyte pair interaction), for the complexation equilibria. The nature of interactions present in the CH3OH solutions is discussed.  相似文献   

7.
甘氨酸、L-丙氨酸和L-丝氨酸在尿素水溶液中的体积性质   总被引:2,自引:0,他引:2  
蛋白质的折叠与解折叠、稳定性、变性行为和酶的活性等都受到环境中其它各种物质影响.作为蛋白质模型分子,氨基酸在混合溶液中的热力学研究近年来引起了广泛重视.尿素在生物体系中的独特地位主要表现在:它是水结构的破坏者,同时又是许多球状蛋白的变性剂.然而,尿素对球状蛋白的变性作用尚未达成共识.  相似文献   

8.
In the present communication, we report the fundamental thermodynamic properties like volumetric and compressibility of very important bioactive compounds, viz. quinine hydrochloride, guanidine hydrochloride and quinic acid (0.01 to 0.1) mol · kg−1 in water at temperatures T = (278.15, 288.15 and 298.15) K. The experimental values of density (ρ) of aqueous solutions and speed of sound (u) in aqueous solutions of the above compounds within the concentration range (0.01 to 0.1) mol · kg−1 have been obtained. The apparent molar volumes (Vϕ), and apparent molar isentropic compressibilities (κϕ) of quinine hydrochloride, guanidine hydrochloride and quinic acid in water have been computed at three different temperatures. Speed of sound values have also been used to calculate the hydration number (nH) of the solute. The temperature dependence of the apparent molar volume has been used to calculate the thermal expansion coefficient (α1), apparent molar expansivity (Eϕ0) and Hepler’s constant 2Vϕ0/T2. The derived parameters have been used to interpret the results in terms of (solute + solute)/(ion + ion), (solute + solvent) interactions, structure making and structure breaking tendencies of solutes in water.  相似文献   

9.
Osmotic coefficient data have been obtained for the binary aqueous solutions of alkaline-earth chlorides (MgCl2, CaCl2 and BaCl2) at 298.15 K using a vapor pressure osmometer. The measurements are extended to aqueous ternary solutions (containing a fixed concentration of 0.1 mol⋅kg−1 18-Crown-6 (18C6) having various electrolyte concentrations (0.01–0.2 mol⋅kg−1). The mean activity coefficients of the ions and of 18C6 in binary and ternary solutions were obtained through calculations of activity and osmotic coefficient data. The lowering of activity coefficients of the ions and of 18C6 in ternary solutions is attributed to the presence of host-guest type equilibria due to complexation between them in the case of solutions containing Ca2+ and Ba2+ ions. The data are further subjected to scrutiny by applying the methodology developed by Patil and Dagade based on the McMillan-Mayer theory of solutions to obtain thermodynamic equilibrium constant values through transfer Gibbs energies. It is noted that the size of the crown cavity (diameter 0.266–0.32 nm), charge density of ions (i.e., coulombic interactions) as well as hydrophobic interaction play a major role in governing the occurrence and stability of the complexed species. The results are compared with those reported earlier for alkali-halides and 18C6 complexes and discussed further from the point of view of the importance of ion-pair formation equilibria in aqueous solutions.  相似文献   

10.
The apparent molar volumes, V,2, of glycine, L-alanine, DL--amino-n-butyric acid, L-valine, and L-leucine have been determined in aqueous 0.25, 0.75, 1.0, and 1.5 mol-dm–3 tetraethylammonium bromide (TEAB) solutions by density measurements at 298.15 K. These data have been used to calculate the infinite dilution apparent molar volumes, V2,m, for the amino acids in aqueous tetraethylammonium bromide and the standard partial molar volumes of transfer (tr V2,m) of the amino acids from water to the aqueous salt solutions. The linear correlation of V2,m for a homologous series of amino acids has been utilized to calculate the contribution of the charged end groups (NH3+, COO), CH2 group, and other alkyl chains of the amino acids to V2,m. The results of the standard partial molar volumes of transfer from water to aqueous tetraethylammonium bromide have been interpreted in terms of ion–ion, ion–polar, and hydrophobic–hydrophobic group interactions. The volume of transfer data suggest that ion–ion or ion–hydrophilic interactions are predominant in the case of glycine and alanine, and hydrophobic–hydrophobic group interactions are predominant in the case of DL--amino butyric acid, L-valine, and L-leucine.  相似文献   

11.
Densities have been measured for the electrolyte (NaCl, NaBr and NaI)‐monosaccharide (D ‐mannose and D‐ribose)‐water solutions at 298.15 K. These data have been used to calculate the apparent molar volumes of the saccharides (VΦ,S) and electrolytes (VΦ,E) in the studied solutions. Infinite dilution apparent molar volumes, VΦ,S0 and VΦ,E0, have been evaluated, together with the standard transfer volumes of the saccharides (ΔtVS0) from water to aqueous electrolyte solutions and those of the electrolytes (ΔtVE0) from water to aqueous saccharide solutions. It was shown that both the ΔtVS0 and ΔtVE0 values are positive and increase with increasing molalities of sodium halides and saccharides, respectively. Overall, the ΔtVS0 and ΔtVE0 values have the order of NaCl > NaBr > NaI except for NaI‐ribose and NaI‐ribose. Volumetric interaction parameters for the electrolyte‐monosaccharide pairs in water were obtained and interpreted by the stereochemistry of the monosaccharide molecules and the structural interaction model.  相似文献   

12.
The apparent molar volume of paracetamol (4-acetamidophenol) in water, 0.1 M HCl and 0.154 M NaCl as solvents at (298.15, 303.15, 308.15 and 310.65) K temperatures and at a pressure of 101.325 kPa were determined from the density data obtained with the help of a vibrating-tube Anton Paar DMA-48 densimeter. The partial molar volume, Vm, of paracetamol in these solvents at different temperatures was evaluated by extrapolating the apparent molar volume versus molality plots to m = 0. In addition, the partial molar expansivity, E°, the isobaric coefficient of thermal expansion, αp, and the interaction coefficient, Sv, have also been computed. The expansivity data show dependence of E° values on the structure of the solute molecules.  相似文献   

13.
Apparent molar volumes and apparent molar isentropic compressibilities of ascorbic acid (vitamin C) and thiamine hydrochloride (vitamin B1) were determined from accurately measured density and sound velocity data in water and in aqueous NaCl solutions at (283.15, 293.15, 298.15, 303.15, 308.15, and 313.15) K. These volume and compressibility data were extrapolated to zero concentration using suitable empirical or theoretical equations to determine the corresponding infinite dilution values. Apparent molar expansibilities at infinite dilution were determined from slopes of apparent molar volume vs. temperature plots. Ionization of both ascorbic acid and thiamine hydrochloride were suppressed using sufficiently acidic solutions. Apparent molar volumes at infinite dilution for ascorbic acid and thiamine hydrochloride were found to increase with temperature in acidic solutions and in the presence of co-solute, NaCl. Apparent molar expansibility at infinite dilution were found to be constant over the temperature range studied and were all positive, indicating the hydrophilic character of the two vitamins studied in water and in the presence of co-solute, NaCl. Apparent molar isentropic compressibilities of ascorbic acid at infinite dilution were positive in water and in the presence of co-solute, NaCl, at low molalities. Those of thiamine hydrochloride at infinitive dilution were all negative, consistent with its ionic nature. Transfer apparent molar volumes of vitamins at infinite dilution from water solutions to NaCl solutions at various temperatures were determined. The results were interpreted in terms of complex vitamin-water-co-solute (NaCl) interactions.  相似文献   

14.
The apparent molal volumes and compressibilities of NaCl, KCl, and CsCl in mixtures of 18-Crown-6 and water have been calculated from density and speed-of-sound measurements at 25°C. The partial molal volumes and compressibilities of the salts when all cations have formed complexes with 18-Crown-6 molecules have been evaluated. The sign and magnitude of the volume and compressibility changes of complex formation strongly suggest that the charge of the cation becomes very effectively screened by the crown ether.  相似文献   

15.
Densities have been measured for the CsCl‐saccharide (D‐glucose, D‐fructose)‐water systems at 298.15 K. These data were used to calculate the apparent molar volume of CsCl (Vφ,E) and the saccharides (Vφ,S), and the infinite dilution apparent molar volume Vφ,E0 and Vφ,S0 in the studied solutions. In addition, the standard transfer volume ΔtVφ,E0 of CsCl from water to aqueous saccharides solutions, and ΔtVφ,S0 of saccharides from water to CsCl solutions have been evaluated and discussed using the structural interaction model. The volumetric interaction parameters for CsCl with saccharide in water were obtained and analyzed by the group additivity principle and the stereochemistry of the saccharide molecules.  相似文献   

16.
Densities for monosaccharide (D-xylose, D-arabinose, D-glucose, D-galactose)–NaI–water solutions were measured at 298.15 K and were used to calculate the apparent molar volumes of these saccharides and NaI. Infinite dilution apparent molar volumes for the saccharides (V,S) in aqueous NaI and those for NaI (V,E) in aqueous saccharide solutions and partial molar volumes of the saccharides (VS) and NaI (VE) at each composition have been evaluated, together with the standard transfer volumes of the saccharides (tr VS) from water to aqueous NaI and those of NaI (trVE) from water to aqueous saccharide solutions. It was shown that the tr VS and trVE values are positive and increase with increasing co-solute molalities. Volumetric parameters indicating the interactions of NaI with saccharides in water were also obtained and applied to explore the interactions between saccharides and NaI in water. A comparison of the ES value for NaI with those for NaCl and NaBr showed that for a given saccharide, except for glucose, the ES value for NaBr is the largest of three sodium halides (NaCl, NaBr and NaI). These were interpreted in terms of the apparent molar electrostriction volumes ( Ve) and the structure interaction model.  相似文献   

17.
刘春丽  马林  林瑞森 《化学学报》2008,66(14):1632-1636
用Anton Paar DMA 55精密数字密度计测定了甘氨酸和L-丝氨酸在LiNO3, NaNO3和KNO3水溶液中的密度, 计算了氨基酸的表观摩尔体积、极限偏摩尔体积、迁移偏摩尔体积、理论水化数和体积作用系数. 根据静电相互作用和结构水合作用模型讨论了氨基酸的侧链和阳离子的性质对迁移偏摩尔体积的影响. 结果表明, 甘氨酸和L-丝氨酸在3种硝酸盐水溶液中的迁移体积均为正值, 并且随着盐溶液浓度的增大而增大. 氨基酸两性离子端基和阴阳离子间的静电作用对迁移体积的贡献是主要的, 静电作用削弱了两性离子带电中心对周围水分子的电致收缩效应, 造成氨基酸的理论水化数随盐溶液浓度的增加而减小. L-丝氨酸的侧链与离子之间的亲水-亲水相互作用对迁移体积有小的正贡献, 使得在同一种盐溶液中L-丝氨酸的迁移体积较甘氨酸的大. 同一种氨基酸在NaNO3和KNO3水溶液中的迁移体积较在LiNO3水溶液中的大, 主要是由于Li+难以去水化. 在低浓度的盐溶液中氨基酸与盐之间的相互作用以1∶1形式为主, 随着溶液浓度的增大, 1∶2形式的相互作用逐渐增大  相似文献   

18.
Apparent molar volumes of a homologous series of amino acids in aqueous proline solutions have been obtained from densities at 298.15 K, measured with a vibrating-tube digital densimeter. These data have been used to deduce the partial molar volumes of transfer from water to aqueous proline solutions; these partial molar volumes of transfer are found to be positive for glycine, alanine, α-amino-n-butyric acid and valine, whereas they are negative for leucine. The number of water molecules hydrated to the amino acids was estimated from the partial molar volume data. In order to supplement this information, enthalpies of transfer of aqueous amino acids from water to 0.1, 2.25 and 1 mol⋅dm−3 aqueous proline have been determined at 298.15 K using a VP-ITC titration calorimeter. The data on the partial molar volumes and enthalpies of transfer are discussed in terms of various interactions operating in the ternary mixtures of amino acids, water and proline.  相似文献   

19.
20.
IntroductionRecentyears ,coordinationpolymershavebeenre ceivedmuchattentionbecauseoftheirinterestingphysi calpropertiessuchaselectricalconductivity ,mag netism ,nonlinearopticalpropertiesandpotentialappli cationsinseparationandcatalyst.1Themodularap proach…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号