首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.  相似文献   

3.
The classical model of the molecule assumes that it has a definite shape and structure like a mechanical object in the world of possible experience. This study deals with this assumption so as to shed some light on the foundations of the model. Arguments based on Kant’s theory of transcendental idealism suggest that neither shape nor structure are attributes of the molecule, but are rather contributions of the subject. This claim has great relevance to the questions of (1) whether or not a quantum treatment of the molecule can derive structure without recourse to any approximation, and (2) the possible existence of emergence and downward causation. The answer to the first question is in the negative, and to the second is that agnosticism is the only possible attitude to have toward this problem. We are creatures who can only imagine what is going on by observing phenomena. All that is accessible to us is the modal structure of the model. The causal structure of the real system is not. From the same point of view and taking the concept of the affordance into account, the adequacy of the concept of molecular structure will be argued. The point is to specify what objects the concept can legitimately be applied to. Also briefly discussed in relation to shape and structure is the idea that molecular chirality might be a probe to reveal the nature of space.  相似文献   

4.
5.
Iron man or weakling? Ligand‐field strengths are conveniently expressed by the empirical spectrochemical series. Although cyanide has been deeply entrenched as a strong‐field ligand, a couple of recent examples cast doubt toward the position of this ligand, namely the high‐spin (S=2) states of [CrII(CN)5]3? and [FeII(tpp)(CN)]?. tpp=meso‐tetraphenylporphinate.

  相似文献   


6.
7.
8.
Ab initio calculations at the MP2 and CCSD(T) levels of theory have disclosed the conceivable existence of fluorine‐coordinated complexes of HHeF with alkali‐metal ions and molecules M+ (M+=Li+–Cs+), M+–OH2, M+–NH3 (M+=Li+, Na+), and MX (M=Li, Na; X=F, Cl, Br). All these ligands L induce a shortening of the H? He distance and a lengthening of the He? F distance accompanied by consistent blue‐ and redshifts, respectively, of the H? He and He? F stretching modes. These structural effects are qualitatively similar to those predicted for other investigated complexes of the noble gas hydrides HNgY, but are quantitatively more pronounced. For example, the blueshifts of the H? He stretching mode are exceptionally large, ranging between around 750 and 1000 cm?1. The interactions of HHeF with the ligands investigated herein also enhance the (HHe)+F? dipole character and produce large complexation energies of around 20–60 kcal mol?1. Most of the HHeF–L complexes are indeed so stable that the three‐body dissociation of HHeF into H+He+F, exothermic by around 25–30 kcal mol?1, becomes endothermic. This effect is, however, accompanied by a strong decrease in the H? He? F bending barrier. The complexation energies, ΔE, and the bending barriers, E*, are, in particular, related by the inverse relationship E*(kcal mol?1)=6.9exp[?0.041ΔE(kcal mol?1)]. Therefore the HHeF? L complexes, which are definitely stable with respect to H+He+F+L (ΔE≈25–30 kcal mol?1), are predicted to have bending barriers of only 0.5–2 kcal mol?1. Overall, our calculations cast doubt on the conceivable stabilization of HHeF by complexation.  相似文献   

9.
A bright future for small molecules: Drugs based on molecules made by chemists are far from old-fashioned. Although biopharmaceuticals developed during the last two decades may have caught the public's imagination, traditional drugs remain a strong force in the pharmaceutical industry. Effective, inexpensive small-molecule drugs are crucial in fighting diseases and maintaining cost-effective health care.  相似文献   

10.
The closely related Cs ( 1 ) and C2v ( 3 ) structures of CH have been reinvestigated at many ab initio levels using MP2/6-31G** and MP2/6-311 + + G(2df, 2pd) geometries. The largest basis sets employed were 6-311G(3df, 2p), 6-311 + + G(3df, 3pd), and the Dunning “correlation consistent” polarized triple-split valence basis set (cc-pVTZ). Electron correlation was probed at the MP4 level, but the QCISD method was also used with the largest basis sets. While electron correlation favors 3 over 1 by about 2 kcal/mol, the correlated relative energies with all basis sets employed range from 0.36–1.03 kcal/mol in favor of 1 . The best estimate of this difference, 0.86 kcal/mol, is essentially identical with the (scaled) zero-point energy difference, 0.84 kcal/mol, favoring 3 over 1 . These results indicate that 1 and 3 have almost exactly the same energy at 0 K. Our best value for the dissociation energy of CH is 42.0 kcal/mol [QCISD(T)/6-311 + + G(3df, 3pd)//MP2(fu)/6-311 + + G(2df, 2pd), corrected to 298 K], which agrees very well with the experimental value. © 1992 by John Wiley & Sons, Inc.  相似文献   

11.
12.
The extent to which proteins in the gas phase retain their condensed-phase structure is a hotly debated issue. Closely related to this is the degree to which the observed charge state reflects protein conformation. Evidence from electron capture dissociation, hydrogen/deuterium exchange, ion mobility, and molecular dynamics shows clearly that there is often a strong correlation between the degree of folding and charge state, with the most compact conformations observed for the lowest charge states. In this article, we address recent controversies surrounding the relationship between charge states and folding, focussing also on the manipulation of charge in solution and its effect on conformation. 'Supercharging' reagents that have been used to effect change in charge state can promote unfolding in the electrospray droplet. However for several protein complexes, supercharging does not appear to perturb the structure in that unfolding is not detected. Consequently, a higher charge state does not necessarily imply unfolding. Whilst the effect of charge manipulation on conformation remains controversial, there is strong evidence that a folded, compact state of a protein can survive in the gas phase, at least on a millisecond timescale. The exact nature of the side-chain packing and secondary structural elements in these compact states, however, remains elusive and prompts further research.  相似文献   

13.
The crystal structure of pentamethylbenzene has been obtained for the first time with the use of synchrotron radiation, whilst the low‐energy spectrum of lattice dynamics, dominated by the methyl group torsions, was obtained using inelastic neutron scattering. The effect of symmetry lowering by the removal of a single methyl group relative to hexamethylbenzene has been investigated, including the role that this plays in the charge‐transfer characteristics of complexes formed with tetracyanoethylene.  相似文献   

14.
Computer-aided drug design is a mature field by some measures, and it has produced notable successes that underpin the study of interactions between small molecules and living systems. However, unlike a truly mature field, fallacies of logic lie at the heart of the arguments in support of major lines of research on methodology and validation thereof. Two particularly pernicious ones are cum hoc ergo propter hoc (with this, therefore because of this) and confirmation bias (seeking evidence that is confirmatory of the hypothesis at hand). These fallacies will be discussed in the context of off-target predictive modeling, QSAR, molecular similarity computations, and docking. Examples will be shown that avoid these problems.  相似文献   

15.
Surprisingly stable : Noble‐metal complexes with terminal oxo ligands are frequently postulated as intermediates, but they are generally considered elusive, as their d electrons destabilize the M?O units. Until recently, the isolation of such compounds was thought to require strong acceptor ligands, but now a remarkably stable Pt?O complex has been obtained employing a simple pincer ligand.

  相似文献   


16.
We present a detailed mechanism for the proton transfer from a protein‐bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time‐resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X‐ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.  相似文献   

17.
18.
19.
Does a high UV environment ensure adequate vitamin D status?   总被引:1,自引:0,他引:1  
This study assesses the Vitamin D status of 126 healthy free-living adults aged 18-87 years, in southeast Queensland, Australia (27 degrees S) at the end of the 2006 winter. Participants provided blood samples for analysis of 25(OH)D (the measure of an individual's Vitamin D status), PTH, Calcium, Phosphate, and Albumin, completed a questionnaire on sun-protective/sun-exposure behaviours, and were assessed for phenotypic characteristics such as skin/hair/eye colour and BMI. We found that 10.2% of the participants had serum 25(OH)D levels below 25 nmol/l (considered deficient) and a further 32.3% had levels between 25 nmol/l and 50 nmol/l (considered insufficient). Our results show that low levels of 25(OH)D can occur in a substantial proportion of the population at the end of winter, even in a sunny climate. 25(OH)D levels were higher amongst those who spent more time in the sun and lower among obese participants (BMI>30) than those who were not obese (BMI<30). 25(OH)D levels were also lower in participants who had black hair, dark/olive skin, or brown eyes, when compared with participants who had brown or fair hair, fair skin, or blue/green eyes. No associations were found between 25(OH)D status and age, gender, smoking status, or the use of sunscreen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号