首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

2.
A Steiner tree for a set S of vertices in a connected graph G is a connected subgraph of G with a smallest number of edges that contains S. The Steiner interval I(S) of S is the union of all the vertices of G that belong to some Steiner tree for S. If S={u,v}, then I(S)=I[u,v] is called the interval between u and v and consists of all vertices that lie on some shortest u-v path in G. The smallest cardinality of a set S of vertices such that ?u,vSI[u,v]=V(G) is called the geodetic number and is denoted by g(G). The smallest cardinality of a set S of vertices of G such that I(S)=V(G) is called the Steiner geodetic number of G and is denoted by sg(G). We show that for distance-hereditary graphs g(G)?sg(G) but that g(G)/sg(G) can be arbitrarily large if G is not distance hereditary. An efficient algorithm for finding the Steiner interval for a set of vertices in a distance-hereditary graph is described and it is shown how contour vertices can be used in developing an efficient algorithm for finding the Steiner geodetic number of a distance-hereditary graph.  相似文献   

3.
For a poset P=(X,≤), the upper bound graph (UB-graph) of P is the graph U=(X,EU), where uvEU if and only if uv and there exists mX such that u,vm. For a graph G, the distance two graph DS2(G) is the graph with vertex set V(DS2(G))=V(G) and u,vV(DS2(G)) are adjacent if and only if dG(u,v)=2. In this paper, we deal with distance two graphs of upper bound graphs. We obtain a characterization of distance two graphs of split upper bound graphs.  相似文献   

4.
For a connected graph G = (V, E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A set S of vertices of G is a monophonic set of G if each vertex v of G lies on an x ? y monophonic path for some elements x and y in S. The minimum cardinality of a monophonic set of G is defined as the monophonic number of G, denoted by m(G). A connected monophonic set of G is a monophonic set S such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected monophonic set of G is the connected monophonic number of G and is denoted by m c (G). We determine bounds for it and characterize graphs which realize these bounds. For any two vertices u and v in G, the monophonic distance d m (u, v) from u to v is defined as the length of a longest u ? v monophonic path in G. The monophonic eccentricity e m (v) of a vertex v in G is the maximum monophonic distance from v to a vertex of G. The monophonic radius rad m G of G is the minimum monophonic eccentricity among the vertices of G, while the monophonic diameter diam m G of G is the maximum monophonic eccentricity among the vertices of G. It is shown that for positive integers r, d and n ≥ 5 with rd, there exists a connected graph G with rad m Gr, diam m Gd and m c (G) =  n. Also, if a,b and p are positive integers such that 2 ≤  ab ≤  p, then there exists a connected graph G of order p, m(G) =  a and m c (G) =  b.  相似文献   

5.
Let G be a connected graph. The subdivision graph of G, denoted by S(G), is the graph obtained from G by inserting a new vertex into every edge of G. The triangulation graph of G, denoted by R(G), is the graph obtained from G by adding, for each edge uv, a new vertex whose neighbours are u and v. In this paper, we first provide complete information for the eigenvalues and eigenvectors of the probability transition matrix of a random walk on S(G) (res. R(G)) in terms of those of G. Then we give an explicit formula for the expected hitting time between any two vertices of S(G) (res. R(G)) in terms of those of G. Finally, as applications, we show that, the relations between the resistance distances, the number of spanning trees and the multiplicative degree-Kirchhoff index of S(G) (res. R(G)) and G can all be deduced from our results directly.  相似文献   

6.
Let G be a graph. If u,vV(G), a u-vshortest path of G is a path linking u and v with minimum number of edges. The closed interval I[u,v] consists of all vertices lying in some u-v shortest path of G. For SV(G), the set I[S] is the union of all sets I[u,v] for u,vS. We say that S is a convex set if I[S]=S. The convex hull of S, denoted Ih[S], is the smallest convex set containing S. A set S is a hull set of G if Ih[S]=V(G). The cardinality of a minimum hull set of G is the hull number of G, denoted by hn(G). In this work we prove that deciding whether hn(G)≤k is NP-complete.We also present polynomial-time algorithms for computing hn(G) when G is a unit interval graph, a cograph or a split graph.  相似文献   

7.
For a pair of vertices x and y in a graph G, we denote by dG(x,y) the distance between x and y in G. We call x a boundary vertex of y if x and y belong to the same component and dG(y,v)?dG(y,x) for each neighbor v of x in G. A boundary vertex of some vertex is simply called a boundary vertex, and the set of boundary vertices in G is called the boundary of G, and is denoted by B(G).In this paper, we investigate graphs with a small boundary. Since a pair of farthest vertices are boundary vertices, |B(G)|?2 for every connected graph G of order at least two. We characterize the graphs with boundary of order at most three. We cannot give a characterization of graphs with exactly four boundary vertices, but we prove that such graphs have minimum degree at most six. Finally, we give an upper bound to the minimum degree of a connected graph G in terms of |B(G)|.  相似文献   

8.
For a proper edge coloring of a graph G the palette S(v) of a vertex v is the set of the colors of the incident edges. If S(u) ≠ S(v) then the two vertices u and v of G are distinguished by the coloring. A d-strong edge coloring of G is a proper edge coloring that distinguishes all pairs of vertices u and v with distance 1 ≤ d (u, v) ≤ d. The d-strong chromatic index ${\chi_{d}^{\prime}(G)}$ of G is the minimum number of colors of a d-strong edge coloring of G. Such colorings generalize strong edge colorings and adjacent strong edge colorings as well. We prove some general bounds for ${\chi_{d}^{\prime}(G)}$ , determine ${\chi_{d}^{\prime}(G)}$ completely for paths and give exact values for cycles disproving a general conjecture of Zhang et al. (Acta Math Sinica Chin Ser 49:703–708 2006)).  相似文献   

9.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) ? |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) ? |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) ? |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.  相似文献   

10.
Let G be a connected graph with vertex set V(G). The degree distance of G is defined as ${D'(G) = \sum_{\{u, v\}\subseteq V(G)} (d_G(u) + d_G (v))\, d(u,v)}$ , where d G (u) is the degree of vertex u, d(u, v) denotes the distance between u and v, and the summation goes over all pairs of vertices in G. In this paper, we characterize n-vertex unicyclic graphs with given matching number and minimal degree distance.  相似文献   

11.
A set of vertices S is said to dominate the graph G if for each v ? S, there is a vertex uS with u adjacent to v. The smallest cardinality of any such dominating set is called the domination number of G and is denoted by γ(G). The purpose of this paper is to initiate an investigation of those graphs which are critical in the following sense: For each v, uV(G) with v not adjacent to u, γ(G + vu) < γ(G). Thus G is k-y-critical if γ(G) = k and for each edge e ? E(G), γ(G + e) = k ?1. The 2-domination critical graphs are characterized the properties of the k-critical graphs with k ≥ 3 are studied. In particular, the connected 3-critical graphs of even order are shown to have a 1-factor and some stringent restrictions on their degree sequences and diameters are obtained.  相似文献   

12.
Let G be a finite connected graph with no cut vertex. A distance tree T is a spanning tree of G which further satisfies the condition that for some vertex v, dG(v, u) = dT(v, u) for all u, where dG(v, u) denotes the distance of u from v in the graph G. The conjecture that if all distance trees of G are isomorphic to each other then G is a regular graph, is settled affirmatively. The conjecture was made by Chartrand and Schuster.  相似文献   

13.
A graph G=(V,E) is an integral sum graph (ISG) if there exists a labeling S(G)⊂Z such that V=S(G) and for every pair of distinct vertices u,vV, uv is an edge if and only if u+vV. A vertex in a graph is called a fork if its degree is not 2. In 1998, Chen proved that every tree whose forks are at distance at least 4 from each other is an ISG. In 2004, He et al. reduced the distance to 3. In this paper we reduce the distance further to 2, i.e. we prove that every tree whose forks are at least distance 2 apart is an ISG.  相似文献   

14.
 Let G be a (V,E) graph of order p≥2. The double vertex graph U 2 (G) is the graph whose vertex set consists of all 2-subsets of V such that two distinct vertices {x,y} and {u,v} are adjacent if and only if |{x,y}∩{u,v}|=1 and if x=u, then y and v are adjacent in G. For this class of graphs we discuss the regularity, eulerian, hamiltonian, and bipartite properties of these graphs. A generalization of this concept is n-tuple vertex graphs, defined in a manner similar to double vertex graphs. We also review several recent results for n-tuple vertex graphs. Received: October, 2001 Final version received: September 20, 2002 Dedicated to Frank Harary on the occasion of his Eightieth Birthday and the Manila International Conference held in his honor  相似文献   

15.
16.
《Discrete Mathematics》2002,231(1-3):211-225
The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity among the vertices of G. The contraction of edge e=uv in G consists of removing e and identifying u and v as a single new vertex w, where w is adjacent to any vertex that at least one of u or v were adjacent to. The graph resulting from contracting edge e is denoted G/e. An edge e is diameter-essential if diam(G/e)<diam(G). Let c(G) denote the number of diameter-essential edges in graph G. In this paper, we study existence and extremal problems for c(G); determine bounds on c(G) in terms of diameter and order; and obtain characterizations of graphs achieving extreme values of c(G).  相似文献   

17.
18.
The geodetic numbers of graphs and digraphs   总被引:1,自引:0,他引:1  
For every two vertices u and v in a graph G,a u-v geodesic is a shortest path between u and v.Let I(u,v)denote the set of all vertices lying on a u-v geodesic.For a vertex subset S,let I(S) denote the union of all I(u,v)for u,v∈S.The geodetic number g(G)of a graph G is the minimum cardinality of a set S with I(S)=V(G).For a digraph D,there is analogous terminology for the geodetic number g(D).The geodetic spectrum of a graph G,denoted by S(G),is the set of geodetic numbers of all orientations of graph G.The lower geodetic number is g~-(G)=minS(G)and the upper geodetic number is g~ (G)=maxS(G).The main purpose of this paper is to study the relations among g(G),g~-(G)and g~ (G)for connected graphs G.In addition,a sufficient and necessary condition for the equality of g(G)and g(G×K_2)is presented,which improves a result of Chartrand,Harary and Zhang.  相似文献   

19.
For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξc(G), is defined as v∈V(G)d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(m ≥ n + 5).  相似文献   

20.
Let G be a graph with vertex set V(G). A set C of vertices of G is g-convex if for every pair \({u, v \in C}\) the vertices on every uv geodesic (i.e. shortest uv path) belong to C. If the only g-convex sets of G are the empty set, V(G), all singletons and all edges, then G is called a g-minimal graph. It is shown that a graph is g-minimal if and only if it is triangle-free and if it has the property that the convex hull of every pair of non-adjacent vertices is V(G). Several properties of g-minimal graphs are established and it is shown that every triangle-free graph is an induced subgraph of a g-minimal graph. Recursive constructions of g-minimal graphs are described and bounds for the number of edges in these graphs are given. It is shown that the roots of the generating polynomials of the number of g-convex sets of each size of a g-minimal graphs are bounded, in contrast to their behaviour over all graphs. A set C of vertices of a graph is m-convex if for every pair \({u, v \in C}\) , the vertices of every induced uv path belong to C. A graph is m-minimal if it has no m-convex sets other than the empty set, the singletons, the edges and the entire vertex set. Sharp bounds on the number of edges in these graphs are given and graphs that are m-minimal are shown to be precisely the 2-connected, triangle-free graphs for which no pair of adjacent vertices forms a vertex cut-set.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号