首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Given a graph and an edge coloring C of G, a heterochromatic cycle of G is a cycle in which any pair of edges have distinct colors. Let d c (v), named the color degree of a vertex v, be the maximum number of distinct colored edges incident with v. In this paper, we give several sufficient conditions for the existence of heterochromatic cycles in edge-colored graphs.  相似文献   

2.
In 2006, Suzuki, and Akbari and Alipour independently presented a necessary and sufficient condition for edge-colored graphs to have a heterochromatic spanning tree, where a heterochromatic spanning tree is a spanning tree whose edges have distinct colors. In this paper, we propose f-chromatic graphs as a generalization of heterochromatic graphs. An edge-colored graph is f-chromatic if each color c appears on at most f(c) edges. We also present a necessary and sufficient condition for edge-colored graphs to have an f-chromatic spanning forest with exactly m components. Moreover, using this criterion, we show that a g-chromatic graph G of order n with ${|E(G)| > \binom{n-m}{2}}$ has an f-chromatic spanning forest with exactly m (1 ≤ m ≤ n ? 1) components if ${g(c) \le \frac{|E(G)|}{n-m}f(c)}$ for any color c.  相似文献   

3.
Let G be an edge-colored graph. An alternating cycle of G is a cycle of G in which any two consecutive edges have distinct colors. Let dc(v), the color degree of a vertex v, be defined as the maximum number of edges incident with v that have distinct colors. In this paper, we study color degree conditions for the existence of alternating cycles of prescribed length.  相似文献   

4.
Suppose that G is a graph and ${f: V (G) \rightarrow \mathbb{N}}$ is a labeling of the vertices of G. Let S(v) denote the sum of labels over all neighbors of the vertex v in G. A labeling f of G is called lucky if ${S(u) \neq S(v),}$ for every pair of adjacent vertices u and v. Also, for each vertex ${v \in V(G),}$ let L(v) denote a list of natural numbers available at v. A list lucky labeling, is a lucky labeling f such that ${f(v) \in L(v),}$ for each ${v \in V(G).}$ A graph G is said to be lucky k-choosable if every k-list assignment of natural numbers to the vertices of G permits a list lucky labeling of G. The lucky choice number of G, η l (G), is the minimum natural number k such that G is lucky k-choosable. In this paper, we prove that for every graph G with ${\Delta \geq 2, \eta_{l}(G) \leq \Delta^2-\Delta + 1,}$ where Δ denotes the maximum degree of G. Among other results we show that for every 3-list assignment to the vertices of a forest, there is a list lucky labeling which is a proper vertex coloring too.  相似文献   

5.
Let G be a graph, and let f be an integer function on V with ${1\leq f(v)\leq d(v)}$ to each vertex ${\upsilon \in V}$ . An f-edge cover coloring is a coloring of edges of E(G) such that each color appears at each vertex ${\upsilon \in V(G)}$ at least f(υ) times. The maximum number of colors needed to f-edge cover color G is called the f-edge cover chromatic index of G and denoted by ${\chi^{'}_{fc}(G)}$ . It is well known that any simple graph G has the f-edge cover chromatic index equal to δ f (G) or δ f (G) ? 1, where ${\delta_{f}(G)=\,min\{\lfloor \frac{d(v)}{f(v)} \rfloor: v\in V(G)\}}$ . The fractional f-edge cover chromatic index of a graph G, denoted by ${\chi^{'}_{fcf}(G)}$ , is the fractional f-matching number of the edge f-edge cover hypergraph ${\mathcal{H}}$ of G whose vertices are the edges of G and whose hyperedges are the f-edge covers of G. In this paper, we give an exact formula of ${\chi^{'}_{fcf}(G)}$ for any graph G, that is, ${\chi^{'}_{fcf}(G)=\,min \{\min\limits_{v\in V(G)}d_{f}(v), \lambda_{f}(G)\}}$ , where ${\lambda_{f}(G)=\min\limits_{S} \frac{|C[S]|}{\lceil (\sum\limits_{v\in S}{f(v)})/2 \rceil}}$ and the minimum is taken over all nonempty subsets S of V(G) and C[S] is the set of edges that have at least one end in S.  相似文献   

6.
We denote by G[X, Y] a bipartite graph G with partite sets X and Y. Let d G (v) be the degree of a vertex v in a graph G. For G[X, Y] and ${S \subseteq V(G),}$ we define ${\sigma_{1,1}(S):=\min\{d_G(x)+d_G(y) : (x,y) \in (X \cap S,Y) \cup (X, Y \cap S), xy \not\in E(G)\}}$ . Amar et al. (Opusc. Math. 29:345–364, 2009) obtained σ 1,1(S) condition for cyclability of balanced bipartite graphs. In this paper, we generalize the result as it includes the case of unbalanced bipartite graphs: if G[X, Y] is a 2-connected bipartite graph with |X| ≥ |Y| and ${S \subseteq V(G)}$ such that σ 1,1(S) ≥ |X| + 1, then either there exists a cycle containing S or ${|S \cap X| > |Y|}$ and there exists a cycle containing Y. This degree sum condition is sharp.  相似文献   

7.
Let G be a graph with vertex set V. A set ${D \subseteq V}$ is a total restrained dominating set of G if every vertex in V has a neighbor in D and every vertex in ${V \setminus D}$ has a neighbor in ${V \setminus D}$ . The minimum cardinality of a total restrained dominating set of G is called the total restrained domination number of G, and is denoted by γ tr (G). In this paper, we prove that if G is a connected graph of order n ≥ 4 and minimum degree at least two, then ${\gamma_{tr}(G) \leq n-\sqrt[3]{n \over 4}}$ .  相似文献   

8.
An edge-colored graph G is rainbow connected if every two vertices of G are connected by a path whose edges have distinct colors. The rainbow connection number of G, denoted by rc(G), is the minimum number of colors that are needed to make G rainbow connected. In this paper we give a Nordhaus–Gaddum-type result for the rainbow connection number. We prove that if G and ${\overline{G}}$ are both connected, then ${4\leq rc(G)+rc(\overline{G})\leq n+2}$ . Examples are given to show that the upper bound is sharp for n ≥ 4, and the lower bound is sharp for n ≥ 8. Sharp lower bounds are also given for n = 4, 5, 6, 7, respectively.  相似文献   

9.
Note on Minimally d-Rainbow Connected Graphs   总被引:1,自引:0,他引:1  
An edge-colored graph G, where adjacent edges may have the same color, is rainbow connected if every two vertices of G are connected by a path whose edges have distinct colors. A graph G is d-rainbow connected if one can use d colors to make G rainbow connected. For integers n and d let t(n, d) denote the minimum size (number of edges) in d-rainbow connected graphs of order n. Schiermeyer got some exact values and upper bounds for t(n, d). However, he did not present a lower bound of t(n, d) for \({3 \leq d < \lceil\frac{n}{2}\rceil}\) . In this paper, we improve his lower bound of t(n, 2), and get a lower bound of t(n, d) for \({3 \leq d < \lceil\frac{n}{2}\rceil}\) .  相似文献   

10.
An edge cover-coloring of G is called a special (f,g)-edge cover-coloring, if each color appears at each vertex at least f(v) times and the number of multiple edges receive the same color is at most g(vw) for vwE(G). Let $\chi_{f_{g}}''$ denote the maximum positive integer k for which using k colors a special (f,g)-edge cover-coloring of G exists. The existence of $\chi_{f_{g}}''$ is discussed and the lower bound of $\chi_{f_{g}}''$ is obtained.  相似文献   

11.
A path in an edge-colored graph is called rainbow if any two edges of the path have distinct colors. An edge-colored graph is called rainbow connected if there exists a rainbow path between every two vertices of the graph. For a connected graph G, the minimum number of colors that are needed to make G rainbow connected is called the rainbow connection number of G, denoted by rc(G). In this paper, we investigate the relation between the rainbow connection number and the independence number of a graph. We show that if G is a connected graph without pendant vertices, then \(\mathrm{rc}(G)\le 2\alpha (G)-1\). An example is given showing that the upper bound \(2\alpha (G)-1\) is equal to the diameter of G, and so the upper bound is sharp since the diameter of G is a lower bound of \(\mathrm{rc}(G)\).  相似文献   

12.
Bounds on the 2-Rainbow Domination Number of Graphs   总被引:1,自引:0,他引:1  
A 2-rainbow domination function of a graph G is a function f that assigns to each vertex a set of colors chosen from the set {1, 2}, such that for any ${v\in V(G), f(v)=\emptyset}$ implies ${\bigcup_{u\in N(v)}f(u)=\{1,2\}.}$ The 2-rainbow domination number γ r2(G) of a graph G is the minimum ${w(f)=\Sigma_{v\in V}|f(v)|}$ over all such functions f. Let G be a connected graph of order |V(G)| = n ≥ 3. We prove that γ r2(G) ≤ 3n/4 and we characterize the graphs achieving equality. We also prove a lower bound for 2-rainbow domination number of a tree using its domination number. Some other lower and upper bounds of γ r2(G) in terms of diameter are also given.  相似文献   

13.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

14.
In this paper, we consider the following firefighter problem on a finite graph G =  (V, E). Suppose that a fire breaks out at a given vertex ${v \in V}$ . In each subsequent time unit, a firefighter protects one vertex which is not yet on fire, and then the fire spreads to all unprotected neighbours of the vertices on fire. The objective of the firefighter is to save as many vertices as possible. The surviving rate ${\rho(G)}$ of G is defined as the expected percentage of vertices that can be saved when a fire breaks out at a random vertex of G. Let ε >  0. We show that any graph G on n vertices with at most ${(\frac {15}{11} - \varepsilon)n}$ edges can be well protected, that is, ${\rho(G) > \frac {\varepsilon}{60} > 0}$ . Moreover, a construction of a random graph is proposed to show that the constant ${\frac {15}{11}}$ cannot be improved.  相似文献   

15.
Let G be a graph and A an abelian group with the identity element 0 and ${|A| \geq 4}$ . Let D be an orientation of G. The boundary of a function ${f: E(G) \rightarrow A}$ is the function ${\partial f: V(G) \rightarrow A}$ given by ${\partial f(v) = \sum_{e \in E^+(v)}f(e) - \sum_{e \in E^-(v)}f(e)}$ , where ${v \in V(G), E^+(v)}$ is the set of edges with tail at v and ${E^-(v)}$ is the set of edges with head at v. A graph G is A-connected if for every b: V(G) → A with ${\sum_{v \in V(G)} b(v) = 0}$ , there is a function ${f: E(G) \mapsto A-\{0\}}$ such that ${\partial f = b}$ . A graph G is A-reduced to G′ if G′ can be obtained from G by contracting A-connected subgraphs until no such subgraph left. Denote by ${\kappa^{\prime}(G)}$ and α(G) the edge connectivity and the independent number of G, respectively. In this paper, we prove that for a 2-edge-connected simple graph G, if ${\kappa^{\prime}(G) \geq \alpha(G)-1}$ , then G is A-connected or G can be A-reduced to one of the five specified graphs or G is one of the 13 specified graphs.  相似文献   

16.
Let G be a connected graph. The notion of rainbow connection number rc(G) of a graph G was introduced by Chartrand et al. (Math Bohem 133:85–98, 2008). Basavaraju et al. (arXiv:1011.0620v1 [math.CO], 2010) proved that for every bridgeless graph G with radius r, ${rc(G)\leq r(r+2)}$ and the bound is tight. In this paper, we show that for a connected graph G with radius r and center vertex u, if we let D r  = {u}, then G has r?1 connected dominating sets ${ D^{r-1}, D^{r-2},\ldots, D^{1}}$ such that ${D^{r} \subset D^{r-1} \subset D^{r-2} \cdots\subset D^{1} \subset D^{0}=V(G)}$ and ${rc(G)\leq \sum_{i=1}^{r} \max \{2i+1,b_i\}}$ , where b i is the number of bridges in E[D i , N(D i )] for ${1\leq i \leq r}$ . From the result, we can get that if ${b_i\leq 2i+1}$ for all ${1\leq i\leq r}$ , then ${rc(G)\leq \sum_{i=1}^{r}(2i+1)= r(r+2)}$ ; if b i  > 2i + 1 for all ${1\leq i\leq r}$ , then ${rc(G)= \sum_{i=1}^{r}b_i}$ , the number of bridges of G. This generalizes the result of Basavaraju et al. In addition, an example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the radius of G, and another example is given to show that there exist infinitely graphs with bridges whose rc(G) is only dependent on the number of bridges in G.  相似文献   

17.
Let G be a graph with vertex set V(G), and let f : V(G) → {?1, 1} be a two-valued function. If k ≥ 1 is an integer and ${\sum_{x\in N[v]} f(x) \ge k}$ for each ${v \in V(G)}$ , where N[v] is the closed neighborhood of v, then f is a signed k-dominating function on G. A set {f 1,f 2, . . . ,f d } of distinct signed k-dominating functions on G with the property that ${\sum_{i=1}^d f_i(x) \le k}$ for each ${x \in V(G)}$ , is called a signed (k, k)-dominating family (of functions) on G. The maximum number of functions in a signed (k, k)-dominating family on G is the signed (k, k)-domatic number of G. In this article we mainly present upper bounds on the signed (k, k)-domatic number, in particular for regular graphs.  相似文献   

18.
Let G =  (V, E) be a finite loopless graph and let (A, +) be an abelian group with identity 0. Then an A-magic labeling of G is a function ${\phi}$ from E into A ? {0} such that for some ${a \in A, \sum_{e \in E(v)} \phi(e) = a}$ for every ${v \in V}$ , where E(v) is the set of edges incident to v. If ${\phi}$ exists such that a =  0, then G is zero-sum A-magic. Let zim(G) denote the subset of ${\mathbb{N}}$ (the positive integers) such that ${1 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}}$ -magic and ${k \geq 2 \in zim(G)}$ if and only if G is zero-sum ${\mathbb{Z}_k}$ -magic. We establish that if G is 3-regular, then ${zim(G) = \mathbb{N} - \{2\}}$ or ${\mathbb{N} - \{2,4\}.}$   相似文献   

19.
A graph G = (V, E) admits a nowhere-zero k-flow if there exists an orientation H = (V, A) of G and an integer flow ${\varphi:A \to \mathbb{Z}}$ such that for all ${a \in A, 0 < |\varphi(a)| < k}$ . Tutte conjectured that every bridgeless graphs admits a nowhere-zero 5-flow. A (1,2)-factor of G is a set ${F \subseteq E}$ such that the degree of any vertex v in the subgraph induced by F is 1 or 2. Let us call an edge of G, F-balanced if either it belongs to F or both its ends have the same degree in F. Call a cycle of G F-even if it has an even number of F-balanced edges. A (1,2)-factor F of G is even if each cycle of G is F-even. The main result of the paper is that a cubic graph G admits a nowhere-zero 5-flow if and only if G has an even (1,2)-factor.  相似文献   

20.
Consider a weighted simple graph G on the vertex set {1,..., n}. For any path p in G, we call ω G (p) the sum of the weights of the edges of the path, and, for any {i, j} ? {1,..., n}, we define the multiset $$D_{\{ i,j\} } (G) = \left\{ {\left. {w_G \left( p \right)} \right|p a simple path between i and j} \right\}.$$ We establish a criterion for a multisubset of ? to be of the form $\mathcal{D}_{\{ i,j\} } (G)$ for some weighted complete graph G and for some i, j vertices of G. Besides we establish a criterion for a family of multi-subsets of ? to be of the form for some weighted complete graph G with vertex set {1,..., n}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号