首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dependence of the fracture toughness K 1C of rolled ageing alloys with structural and crystallographic textures on the loading direction is established. A formula describing the anisotropy of the K 1C and including structural parameters of structurally textured alloys on planes of growth of mode I cracks is derived and validated for aluminum alloys. The influence of crystallographic planes and crack growth direction on K 1C is analyzed for titanium alloy as a rolled material with crystallographic texture  相似文献   

2.
The drawing or rolling process endows polycrystal shape memory alloy with a crys- tallographic texture, which can result in macroscopic anisotropy. The main purpose of this work is to develop a constitutive model to predict the thermomechanical behavior of shape memory alloy sheets, which accounts for the crystallographic texture. The total macroscopic strain is decom- posed into elastic strain and macro-transformation strain under isothermal condition. Considering the transformation strain in local grains and the orientation distribution function of crystallo- graphic texture, the macro-transformation strain and the effective elastic modulus of textured polycrystal shape memory alloy are developed by using tensor expressions. The kinetic equation is established to calculate the volume fraction of the martensite transformation under given stress. Furthermore, the Hill's quadratic model is developed for anisotropic transformation hardening of textured SMA sheets. All the calculation results are in good agreement with experimental data, which show that the present model can accurately describe the macro-anisotropic behaviors of textured shape memory alloy sheets.  相似文献   

3.
The effect of crystallographic texture smearing on the anisotropy of fracture stress of metals is analyzed. It is found that texture smearing leads to an appreciable decrease in the value of the coefficient of cleavage-stress anisotropy compared with that for metals with very sharp textures. The magnitude of this effect depends on the initial plastic strain (that depends on the breadth of texture component) and the level of stress triaxiality.  相似文献   

4.
The r-value of a sheet metal is a measure of plastic anisotropy frequently used for prediction of performance in deep-drawing. It has also figured prominently in the literature for validation of theories where the predicted angular dependence of r is compared with the measured dependence. As plastic anisotropy in sheet metals is caused mainly by the preferred orientations of grains within the polycrystalline metal, it is natural to ask how r would depend on the orientation distribution function (ODF) w which defines the crystallographic texture of the polycrystal. In this paper a general formula relating r to w is derived for textured sheet metals whose plastic flow behavior is governed by a plastic potential f(σ, w), the anisotropic part of which depends linearly on the texture coefficients; here σ denotes the deviator of the Cauchy stress. Specific forms of this formula for orthorhombic sheets of cubic and of hexagonal metals are explicitly given.  相似文献   

5.
提出了利用率相关晶体塑性模型标定织相可调本构模型的求解步骤,得出了一组依赖于晶粒间相互作用假设而独立于具体板材织构的本构相关系数.以此为基础再结合板材织构系数所得出的本构模型系数可避免出现屈服面非外凸的情形.利用所提求解步骤对在不同热处理条件下产生不同织构的AL5052铝合金板的深拉成形过程进行了有限元模拟.结果再现了典型织构在板材成形过程中所出现的塑性各向异性,从而表明求解步骤的可行性.  相似文献   

6.
7.
A general ultrasonic attenuation model for a polycrystal with arbitrary macroscopic texture and triclinic ellipsoidal grains is described with proper accounting for the anisotropic Green’s function for the reference medium. The texture and the ellipsoidal grain frames in the model are independent and the wave propagation direction is arbitrary. The attenuation coefficients are obtained in the Born approximation accompanied by the Rayleigh and stochastic asymptotes. The scattering model displays statistical anisotropy due to two independent factors: (1) shape of the oriented grains and (2) preferred crystallographic orientation of the grains leading to macroscopic anisotropy of the homogenized reference medium. The model is applicable to most single phase polycrystalline materials that may occur as a result of thermomechanical manufacturing processes leading to different macrotextures and elongated-shaped grains. It predicts the strength of ultrasonic scattering and its dependence on frequency and propagation direction as a function of grain shape, grain crystallographic symmetry and macroscopic texture parameters and provides the texture-induced dependence of macroscopic ultrasonic velocity on propagation angle. It considers proper wave polarizations due to macroscopic anisotropy and scattering-induced transformations of waves with different polarizations. Competing effects of grain shape and texture on the attenuation are observed. In contrast to the macroscopically isotropic case, where in the stochastic regime the attenuation is highest in the direction of the longest ellipsoidal axis of the grain, the wave attenuation in the elongation direction may be suppressed or amplified by the texture with different effects on the quasilongitudinal and quasitransverse waves. The frequency behavior is also interestingly affected by texture: a hump in the total attenuation coefficient is found for the fast quasitransverse wave which is purely the result of macroscopic anisotropy and the existence of two quasitransverse waves; this hump is not observed in the macroscopically isotropic case. Striking differences of the texture effect on the directional dependences of the attenuation coefficients are found at low versus high frequencies.  相似文献   

8.
9.
It is well known that the presence of continuous fibres in SiC/Ti composites leads to a high mechanical anisotropy of the composite between the longitudinal and the two transverse directions. But it is also possible that the crystallographic texture of the matrix may lead to a non-negligible anisotropy of the mechanical properties of the composite. The crystallographic orientation of the matrix grains was determined using the Electron BackScattering Diffraction technique. A local texture of the matrix of the composite is thus evidenced. Finite Element calculations are used to determine the stress field in the matrix resulting from an applied transverse loading. The representative mechanical quantities thus determined are discussed in relation with the fundamental mechanisms of plastic deformation of the matrix. Finally, the crystallographic texture of the matrix of the composite is taken into account in the numerical modellings using a three-scale model that combines crystal plasticity, a polycrystalline aggregate model and a periodic homogenization through a Finite Element unit cell for the composite analysis.  相似文献   

10.
Consideration of plastic anisotropy is essential in accurate simulations of metal forming processes. In this study, finite element (FE) simulations have been performed to predict the plastic anisotropy of sheet metals using a texture- and microstructure-based constitutive model. The effect of crystallographic texture is incorporated through the use of an anisotropic plastic potential in strain-rate space, which gives the shape of the yield locus. The effect of dislocation is captured by use of a hardening model with four internal variables, which characterize the position and the size of the yield locus. Two applications are presented to evaluate the accuracy and the efficiency of the model: a cup drawing test and a two-stage pseudo-orthogonal sequential test (biaxial stretching in hydraulic bulging followed by uniaxial tension), using an interstitial-free steel sheet. The experimental results of earing behavior in the cup drawing test, maximum pressure and strain distribution in bulging, and transient hardening in the sequential test are compared against the FE predictions. It is shown that the current model is capable of predicting the plastic anisotropy induced by both the texture and the strain-path change. The relative significance of texture and strain-path change in the predictions is discussed.  相似文献   

11.
It is widely reported in current literature that the precipitation hardened Al–Li sheet alloys exhibit extremely high anisotropy in yield (and ultimate tensile) strength, which is well beyond what can be explained as purely a consequence of the strong crystallographic texture in the material (e.g. J. Mater. Sci. Eng. A265, 1999, 100). This paper presents a crystal plasticity based modeling framework that will (i) facilitate the segregation of the contributions to the overall anisotropy from crystallographic texture and precipitation hardening, and (ii) correlate the contribution from precipitate hardening to either co-planar slip activity or the non-coplanar slip activity in the cold-working step prior to the aging heat treatment. More specifically, a Taylor-type (fully-constrained) crystal plasticity model was formulated to predict the yield strength of the fully processed sheet and its anisotropy, while accounting for the initial texture in the hot-worked sheet, its evolution during the cold-working step prior to aging, and the inhomogeneous nucleation of the T1 phase platelets (these are known to form on {111} planes, but not usually in equal amounts on the different {111} planes in a given crystal). In an effort to illustrate the methodology developed in the study, a limited set of experiments was conducted on Al–Li 2090-T8E41 alloy sheet. Off-axis stretches were applied on the sheet at room temperature prior to the aging treatment, and the mechanical anisotropy in the fully processed sheets was characterized by performing tension tests on coupons cut from the sheet at 0, 30, 45, 60 and 90° to the original rolling direction (RD). Both the initial texture in the sheet and its evolution during the different off-axis stretches were characterized. The alloys processed in this study showed pronounced anisotropy. The application of the methodology developed in this study revealed that much of the observed anisotropy in this particular data set could be explained by accounting for the texture in the sample in the processed condition. Although the data set available was inadequate to establish clear correlations of the anisotropy with preferential hardening mechanisms arising from either co-planar or non-co-planar slip activity during the off-axis stretch, there were indications favoring the latter. This case study, however, illustrates the application of the methodology developed in this study to obtain better insight into the nature of the anisotropy in these sheets and its physical origin.  相似文献   

12.
A new latent hardening model for body-centered-cubic (bcc) single crystals motivated by the inapplicability of the Schmid law (Critical Resolved Shear Stress Criterion) is presented. This model is based on the asymmetry of shearing resistance of the {112} slip planes depending on the shearing direction in the sense of ‘twin’ and ‘anti-twin’. For the interpretation of deformation of polycrystalline aggregates depending upon initial texture, a constitutive law for bcc single crystals is developed. This law is based on a rigorous constitutive theory for crystallographic slip that accounts for the effects of strain hardening, rate-sensitivity and thermal softening. The deformation response of textured polycrystal is investigated by means of a Taylor type averaging scheme and an established numerical procedure. Results for textured tungsten polycrystals at low and high strain rates for two different textures [001] and [011] are presented and compared with experimental results. The predictions compare well with experimental observations for the [001] texture. In the [011] texture, due to the reduced symmetry of deformation, lateral tensile stresses develop even under uniaxial compression. These lateral tensile stresses are responsible for observed lack of ductility and transgranular failure in the [011] texture.  相似文献   

13.
The Voigt-Reuss-Hill (VRH) average provides a simple way to estimate the elastic constants of a textured polycrystal in terms of its crystallographic texture and the elastic constants of the constituting crystallites. Empirically the VRH estimates were found in most cases to have an accuracy comparable to those obtained by more sophisticated techniques such as self-consistent schemes. In this paper we determine, in the space of fourth-order tensors with major and minor symmetries, a special set of irreducible basis tensors, with which we obtain a simple explicit formula for the VRH average for elastic polycrystals with arbitrary crystal and texture symmetries. Our formula is correct to first order in the texture coefficients.  相似文献   

14.
15.
Model of evolution of plastic anisotropy due to crystallographic texture development, in metals subjected to large deformation processes, is presented. The model of single grain with the regularized Schmid law proposed by Gambin is used. Evolution of crystallographic texture during drawing, rolling and pure shear is calculated. Phenomenological texture-dependent yield surface for polycrystalline sheets is proposed. Evolution of this yield surface is compared with evolution of phenomenological higher order yield surfaces proposed by Hill and Barlat with Lian for drawing, rolling and pure shear processes. The change of the Hill yield surface and the Barlat–Lian yield surface is obtained by replacing material parameters present in these conditions by texture-dependent functions.  相似文献   

16.
The purpose of the present study is to thoroughly understand the stress–strain behavior of polycrystalline NiTi deformed under tension versus compression. To do this, a micro-mechanical model is used which incorporates single crystal constitutive relationships and experimentally measured polycrystalline texture into the self-consistent formulation. For the first time it is quantitatively demonstrated that texture measurements coupled with a micro-mechanical model can accurately predict tension/compression asymmetry in NiTi shape memory alloys. The predicted critical transformation stress levels and transformation stress–strain slopes under both tensile and compressive loading are consistent with experimental results. For textured polycrystalline NiTi deformed under tension it is demonstrated that the martensite evolution is very abrupt, consistent with the Luders type deformation experimentally observed. The abrupt transformation under tension is attributed to the fact that the majority of the grains are oriented along the [111] crystallographic direction, which is soft under tensile loading. Since single crystals of the [111] orientation are hard under compression it is also demonstrated that under compression the martensite in textured polycrystalline NiTi evolves relatively slower.  相似文献   

17.
高分子材料机械密封磨损特性及表面织构的影响   总被引:3,自引:1,他引:3  
赵帅  王晓雷 《摩擦学学报》2015,35(6):761-767
为提高金属/高分子材料机械密封的抗磨损性能,采用光刻-电解技术在316不锈钢表面制作微凹坑阵列形式的表面织构,与5种不同弹性模量的高分子材料组成摩擦副进行磨损试验.试验结果表明,对弹性模量最小的UHMWPE材料,表面织构起到了增磨作用,对其他四种弹性模量较高的材料,表面织构起到减磨作用,而且,随着高分子材料弹性模量的增大,表面织构表现出的减磨作用也随之增大.为解释这个现象,利用ANSYS有限元分析软件对摩擦副接触面进行了应力和变形分析,结果表明:织构化表面在接触过程中会产生应力集中和表面形变,材料的弹性模量越小,凹坑引起的变形越明显,可能产生的切削作用越显著.  相似文献   

18.
The influence of texture and grain structure on strain localisation and formability is investigated experimentally and numerically for two AlZnMg alloys. The considered alloys have recrystallised or non-recrystallised grain structure and strong or nearly random texture. The textured materials have rotated cube texture or β-fibre texture of high intensity. A comprehensive test programme, including uniaxial tension tests in three directions, through-thickness compression tests, plane-strain tension tests and double-plate formability tests, is completed to determine the work hardening, plastic anisotropy and formability of the materials. Strain localisation and failure are examined by optical microscopy. Using parts of the test data, an anisotropic plasticity model is calibrated and applied in calculation of forming limit curves, using the Marciniak–Kuczynski (M-K) analysis for anisotropic materials. The formability tests show that the materials with nearly random texture exhibit superior formability. This is mainly attributed to enhanced work hardening for these materials. For the material exhibiting strong β-fibre texture significantly lower formability is found in equibiaxial stretching than in plane strain, while this characteristic is not seen for the material with strong cube texture. The M-K analysis is capable of predicting the major trends of the experiments, and captures the low formability of the alloy with strong β-fibre texture under equibiaxial straining. A numerical study is performed to evaluate the sensitivity of the predicted forming limit curves to parameters not determined experimentally.  相似文献   

19.
Mechanistic explanations for the plastic behavior of a wrought magnesium alloy are developed using a combination of experimental and simulation techniques. Parameters affecting the practical sheet formability, such as strain hardening rate, strain rate sensitivity, the degree of anisotropy, and the stresses and strains at fracture, are examined systematically by conducting tensile tests of variously oriented samples at a range of temperatures (room temperature to 250 °C) and strain rates (10−5–0.1 s−1). Polycrystal plasticity simulations are used to model the observed anisotropy and texture evolution. Strong in-plane anisotropy observed at low temperatures is attributed to the initial texture and the greater than anticipated non-basal cross-slip of dislocations with 〈a〉 type Burgers vectors. The agreement between the measured and simulated anisotropy and texture is further validated by direct observations of the dislocation microstructures using transmission electron microscopy. The increase in the ductility with temperature is accompanied by a decrease in the flow stress, an increase in the strain rate sensitivity, and a decrease in the normal anisotropy. Polycrystal simulations indicate that an increased activity of non-basal, 〈c + a〉, dislocations provides a self-consistent explanation for the observed changes in the anisotropy with increasing temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号