首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of hydrophilic ethylhydroxyethylcellulose (EHEC) polymer on the surface of TiO2 and Fe2O3 inorganic pigments under the action of intense mechanical actions was studied by infrared spectroscopy. Mechanoactivation methods included ultrasonic action and mechanical treatment at sonic frequencies. Intense action on TiO2 and Fe2O3 aqueous disperse systems activated the surface of inorganic oxides and intensified the adsorption of the polymer. It also caused the formation of adsorption-solvation EHEC layers with increased densities, which determined the sedimentation stability of disperse systems.  相似文献   

2.
The current status of research on the hydrophilicity of disperse systems was discussed. The criterial values of the surface pressure of the adsorbed water film, heat and contact angle of wetting with water which separate the hydrophilic and hydrophobic surfaces were determined. An analysis of the thermodynamic characteristics showed that the boundary layers of water are more ordered near a hydrophilic surface (mica, kaolinite) and less ordered near a hydrophobic surface (organokaolinite, graphite) in comparison to liquid water. The biexponential character of the change in the structural component of the disjoining pressure with the thickness of the water film was demonstrated for disperse materials with a hydrophilic surface (kaolinite). The classification of the forms of water bound by hydrophilic disperse materials was discussed. The changes in the thermodynamic functions of vermiculite in adsorption of water were found with complex adsorptioncalorimetric and dilatometric measurements. This adsorbent undergoes a first-order phase transition during adsorption. The prospects for use of the adsorption-calorimetric method for determining the amount and energy characteristics of hydrophilic sites was demonstrated for ZSM-5 hydrophobic zeolite.Presented to the meeting of the Chemistry Section of the Academy of Sciences of the Ukraine on October 27–29, 1992.Translated from Teoreticheskaya i Eksperimental'naya Khimiya, Vol. 29, No. 2, pp. 100–115, March–April, 1993.  相似文献   

3.
We have performed molecular dynamics simulations of polyelectrolyte adsorption at oppositely charged surfaces from dilute polyelectrolyte solutions. In our simulations, polyelectrolytes were modeled by chains of charged Lennard-Jones particles with explicit counterions. We have studied the effects of the surface charge density, surface charge distribution, solvent quality for the polymer backbone, strength of the short-range interactions between polymers and substrates on the polymer surface coverage, and the thickness of the adsorbed layer. The polymer surface coverage monotonically increases with increasing surface charge density for almost all studied systems except for the system of hydrophilic polyelectrolytes adsorbing at hydrophilic surfaces. In this case the polymer surface coverage saturates at high surface charge densities. This is due to additional monomer-monomer repulsion between adsorbed polymer chains, which becomes important in dense polymeric layers. These interactions also preclude surface overcharging by hydrophilic polyelectrolytes at high surface charge densities. The thickness of the adsorbed layer shows monotonic dependence on the surface charge density for the systems of hydrophobic polyelectrolytes for both hydrophobic and hydrophilic surfaces. Thickness is a decreasing function of the surface charge density in the case of hydrophilic surfaces while it increases with the surface charge density for hydrophobic substrates. Qualitatively different behavior is observed for the thickness of the adsorbed layer of hydrophilic polyelectrolytes at hydrophilic surfaces. In this case, thickness first decreases with increasing surface charge density, then it begins to increase.  相似文献   

4.
The problem of the nature of the stability of colloidal solutions and the mechanism of their coagulation by electrolytes has been examined. On the basis of an analysis of a general criterion for the stability of ionstabilized disperse systems and a comparison of the theoretical results with the experimental facts, it has been concluded that the actual coagulation process in lyophobic sols never takes place by a purely concentration mechanism. Neutralization effects, associated with adsorption phenomena, which take place in a colloidal system when electrolytes are added, are of considerable importance. When treated with nonionogenic surface-active substances, hydrophobic sols are converted into hydrophilic sols, which retain their stability even in moderately concentrated electrolyte solutions. This conversion is brought about as a result of the adsorption of molecules of the surface-active compounds, leading to the production of hydrophilic properties on the surface of the colloidal particles. It has been suggested that the coagulation of these lyophilic sols takes place as a result of the breakdown of the polymolecular solvate layers at the boundary of the colloidal-disperse phase.Paper read at the XX International Congress of Pure and Applied Chemistry, Moscow, July, 1965.  相似文献   

5.
The capillary electrokinetics method (measurements of streaming potential and current in original and hydrophobized fused quartz capillaries with radii of 5–7 μm) is employed to study the formation of adsorption layers upon contact with solutions containing a cationic polyelectrolyte, poly(diallyldimethylammonium chloride). It is shown that polyelectrolyte adsorption causes the charge reversal of both hydrophilic and hydrophobic surfaces, with a smaller amount of the substance being adsorbed on the hydrophobic than on the hydrophilic surface. The adsorption on both surfaces increases with the polymer solution concentration. The cationic polyelectrolyte adsorption on the pure quartz surface occurs mainly due to the electrostatic attraction, while, in the case of the hydrophobic surface, the contribution of hydrophobic interactions increases. The study of the layer deformability shows that, on the hydrophilic surfaces, the layer ages and its structure depends on the polymer solution concentration. On the modified surface, the deformation of even freshly formed layers is slight, which suggests that a denser layer is formed on the hydrophobic surface. In contrast to the hydrophilic surface, the polyelectrolyte is partly desorbed from the hydrophobic surface.  相似文献   

6.
We have studied the effect of normal forces and shear forces on the stability and functionality of a polymer brush layer formed upon adsorption of polymeric micelles on hydrophilic and hydrophobic surfaces. The micelles consist of oppositely charged polyelectrolyte blocks (poly(acrylic acid) and poly(N-methyl 2-vinyl pyridinium iodide), and a neutral block (poly(vinyl alcohol)) or neutral grafts (poly(ethylene oxide)). The strength of the attachment of the micellar layers to various substrates was evaluated with Atomic Force Microscopy. Flow cell experiments allowed for the evaluation of long-term stability of coatings in lateral flow. Fixed angle optical reflectometry was used to quantify protein (BSA) adsorption on the micellar layers after their exposure to flow. The results show that adsorbed micellar layers are relatively weakly attached to hydrophobic surfaces and much stronger to hydrophilic surfaces, which has a significant impact on their stability. Adsorbed layers maintain their ability to suppress protein adsorption on hydrophilic surfaces but not on hydrophobic surfaces. Due to the relatively weak attachment to hydrophobic surfaces the structure of adsorbed layers may easily be disrupted by lateral forces, such that the complex coacervate-brush structure no longer exists.  相似文献   

7.
The influence of solid disperse particles (aerosil) on phase equilibria in ternary (polymer-polymer-solvent) and binary (polymer-polymer) systems has been investigated using adsorption and gas chromatography techniques. The change in position and shape of the binodal for the ternary systems has been established. The region of thermodynamic compatibility of two polymers in a common solvent is broadened due to the selective adsorption of high molecular weight fraction of one of the polymers, this effect being dependent on the amount of solid particles introduced into the system. For binary systems, the thermodynamic interaction parameters χ23 have been determined and increasing thermodynamic stability of the mixture in the presence of the solid phase has been discovered. The complicated dependences of the interaction parameters on mixture composition are connected with differences in selectivity of adsorption for various compositions. It is supposed that increased thermodynamic stability of a mixture of two incompatible polymers in the presence of solid is due to the transition of both polymers into adsorption and border layers.  相似文献   

8.
A computer model has been developed to refine the notions of the kinetics of structural transformations in surfactant-modified disperse systems, the mechanism of the influence of adsorption layers on viscosity, conditions of aggregation, and evolution of nonuniformities in microstructures. Classical concepts of the structure-related mechanical barrier providing disperse systems with stability to aggregation, as well as the criterion of adsorption-layer breakdown upon interparticle collisions under dynamic conditions, have been used. It has been shown that adsorption-layer breakdown under dynamic conditions may lead to the appearance of an extreme in the viscosity curve of a disperse system. The combined effect of additives of surfactants with different molecular masses successively added to the systems has been studied via taking into account the influence of surfactant adsorption layers on the dynamics of contact interactions. The simulation results make it possible to optimize the regulation of structure-related rheological properties of dispersions so as to decrease their apparent viscosity with a simultaneous increase in the uniformity of the structure.  相似文献   

9.
The possibility of reducing fibrinogen adsorption to solid surfaces by competitive adsorption of cellulose ethers (EHEC, HEC) was investigated. The surface concentration of fibrinogen adsorbed onto hydrophilic and hydrophobic (methylized) glass was measured with an enzyme-linked immunosorbent assay. The immunoassay was calibrated by ellipsometry, using the initial mass transport limitation of adsorption for calculations of the maximum amount of adsorbed protein.At a hydrophobic surface, the presence of cellulose polymers caused a decrease of the adsorption of fibrinogen. The hydrophobic EHEC (cloud point 35°C) was most efficient and abolished surface-adsorption of the protein.At a hydrophilic surface, positive cooperativity was seen between fibrinogen and cellulose polymers. The hydrophilic HEC (cloud point >100°C) gave the most prominent effect.The results indicate that the affinity between a water soluble polymer or protein and a solid surface is not the only factor determining surface adsorption. The finding that there may be both positive and negative cooperativity in the adsorption of polymers shows the importance of polymer compatibility in layers of adsorbed polymers.  相似文献   

10.
The problems of modification of the gelatin properties, the polymer for the adhesion of emulsion layer of photographic films are considered. For enhancing the physicochemical parameters of emulsion layer is used styrene acrylate latex in conjunction with hydrophilic synthetic polymer for the modification of gelatin. A method is proposed that simplifi es technology of introducing the gelatin modifying polymer to the emulsion layers.  相似文献   

11.
Adsorption from electrolyte solutions of fully hydrolyzed polyvinylamine on cellulose fibers was investigated by supplying the polymer to the fibers at controlled rate. This was implemented by employing a reactor only open to the fluid in which the fiber dispersion were confined and homogenized. The adsorbed layers may be defined as diffuse or dense layers. Diffuse layers are characterized by a surface coverage limited to 0.65 mg/g cellulose in salt-free solutions. Addition of NaCl or CaCl(2) to the fiber dispersion and the polymer solution promotes the adsorption rate and increases the amount of adsorption to 1.5 mg/g cellulose. For dense polymer layers, for which the coverage amounts to values close to 10 mg/g cellulose in salt-free systems, addition of electrolyte does not change the kinetic and adsorption characteristics. Insofar as the variation of the molecular areas of the polymer within the diffuse layers as a function of the ionic strength parallels the variation of the molecular characteristics of solute molecules, the formation of diffuse layers is expected to proceed by random deposition of solute molecules which later individually sustain strong reconformation. Adsorption isotherms show a limited influence of the ionic strength. Obviously, the passage from dense layers of high surface coverage to low adsorption values at equilibrium requires extended reconformation of adsorbed macromolecules and desorption of a great part of the molecules already adsorbed.  相似文献   

12.
Monte Carlo study of surfactant adsorption on heterogeneous solid surfaces   总被引:1,自引:0,他引:1  
The equilibrium between free surfactant molecules in aqueous solution and adsorbed layers on structured solid surfaces is investigated by lattice Monte Carlo simulation. The solid surfaces are composed of hydrophilic and hydrophobic surface regions. The structures of the surfactant adsorbate above isolated surface domains and domains arranged in a checkerboard-like pattern are characterized. At the domain boundary, the adsorption layers display a different behavior for hydrophilic and hydrophobic surface domains. For the checkerboard-like surfaces, additional adsorption takes place at the boundaries between surface domains.  相似文献   

13.
Monte Carlo simulations are reported to study the structure of polymers adsorbed from solution onto strongly attractive, perfectly smooth substrates. Six systems spanning a range of molecular weight distributions are investigated with a coarse-grained united atom model for freely rotating chains. By employing a global replica exchange algorithm and topology altering Monte Carlo moves, a range of monomer-surface attraction from weak (0.27kT) to strong (4kT) is simultaneously explored. Thus for the first time ever, equilibrium polymer adsorption on highly attractive surfaces is studied, with all adsorbed molecules displaying similar properties and statistics. The architecture of the adsorbed layers, including density profiles, bond orientation order parameters, radii of gyration, and distribution of the adsorbed chain fractions, is shown to be highly dependent on the polydispersity of the polymer phase. The homology of polymer chains, and the ergodicity of states explored by the molecules is in contrast to the metastable, kinetically constrained paradigm of irreversible adsorption. The structure of more monodisperse systems is qualitatively similar to experimental results and theoretical predictions, but result from very different chain conformations and statistics. The polydispersity-dependent behavior is explained in the context of the competition between polymers to make contact with the surface.  相似文献   

14.
15.
The interfacial behavior of silica nanoparticles in the presence of an amphiphilic polymer poly( N-isopropylacrylamide) (PNIPAM) and an anionic surfactant sodium dodecyl sulfate (SDS) is studied using neutron reflectivity. While the nanoparticles do not show any attraction to hydrophilic and hydrophobic surfaces in pure water, presence of the amphiphilic polymer induces significant adsorption of the nanoparticles at the hydrophobic surface. This interfacial behavior is activated due to interaction of the nanoparticles with PNIPAM, the amphiphilic nature of which leads to strong adsorption at a hydrophobic surface but only weak interaction with a hydrophilic surface. The presence of SDS competes with nanoparticle-PNIPAM interaction and in turn modulates the interfacial properties of the nanoparticles. These adsorption results are discussed in relation to nanoparticle organization templated by dewetting of charged polymer solutions on a solid substrate. Our previous studies showed that nanoparticle assembly can be induced to form complex morphologies produced by dewetting of the polymer solutions, such as a polygonal network and long-chain structures. This approach, however, works on a hydrophilic substrate but not on a hydrophobic substrate. These observations can be explained in part by particle-substrate interactions revealed in the present study.  相似文献   

16.
The adsorption of carboxymethyl cellulose (CMC), one of the most important cellulose derivatives, is crucial for many scientific investigations and industrial applications. Especially for surface modifications and functionalization of materials, the polymer is of interest. The adsorption properties of CMC are dependent not only on the solutions state, which can be influenced by the pH, temperature, and electrolyte concentration, but also on the chemical composition of the adsorbents. We therefore performed basic investigation studies on the interaction of CMC with a variety of polymer films. Thin films of cellulose, cellulose acetate, deacetylated cellulose acetate, polyethylene terephthalate, and cyclo olefin polymer were therefore prepared on sensors of a QCM-D (quartz crystal microbalance) and on silicon substrates. The films were characterized with respect to the thickness, wettability, and chemical composition. Subsequently, the interaction and deposition of CMC in a range of pH values without additional electrolyte were measured with the QCM-D method. A comparison of the QCM-D results showed that CMC is favorably deposited on pure cellulose films and deacetylated cellulose acetate at low pH values. Other hydrophilic surfaces such as silicon dioxide or polyvinyl alcohol coated surfaces did not adsorb CMC to a significant extent. Atomic force microcopy confirmed that the morphology of the adsorbed CMC layers differed depending on the substrate. On hydrophobic polymer films, CMC was deposited in the form of larger particles in lower amounts whereas hydrophilic cellulose substrates were to a high extent uniformly covered by adsorbed CMC. The chemical similarity of the CMC backbone seems to favor the irreversible adsorption of CMC when the molecule is almost uncharged at low pH values. A selectivity of the cellulose CMC interaction can therefore be assumed. All CMC treated polymer films exhibited an increased hydrophilicity, which confirmed their modification with the functional molecule.  相似文献   

17.
The adsorption of two cationic amphiphilic polyelectrolytes, which are copolymers of two charged monomers, triethyl(vinylbenzyl)ammonium chloride and dimethyldodecyl(vinylbenzyl)ammonium chloride (which is the amphiphilic one) with different contents of amphiphilic groups (40% (40DT) and 80% (80DT)), onto the hydrophilic silica-aqueous solution interface has been studied by in situ null ellipsometry and tapping mode atomic force microscopy (AFM). Adsorption isotherms for both polyelectrolytes were obtained at 25 degrees C and at different ionic strengths, and the adsorption kinetics was also investigated. At low ionic strength, thin adsorbed layers were observed for both polyelectrolytes. The adsorption increases with polymer concentration and reaches, in most cases, a plateau at a concentration below 50 ppm. For the 80DT polymer, at higher ionic strength, an association into aggregates occurs at concentrations at and above 50 ppm. The aggregates were observed directly by AFM at the surface, and by dynamic light scattering in the solution. The adsorption data for this case demonstrated multilayer formation, which correlates well with the increase in viscosity with the ionic strength observed for 80DT.  相似文献   

18.
Associating polymers are hydrophilic long-chain molecules containing a small amount of hydrophobic groups. The aqueous solutions show viscoelastic responses above some critical concentrations because a three-dimensional structure is formed by association of hydrophobic groups. When the associating polymers are added to silica suspensions at low concentrations, the flocculation is induced by bridging mechanisms, and the flow of suspensions become shear-thinning. For suspensions prepared with polymer solutions in which the associating network is developed, the viscosity decreases, shows a minimum, and then increases with increasing particle concentration. The viscosity decrease may arise from the breakdown of associating network due to adsorption of polymer chains onto the silica surfaces. As the particle concentration is increased, the polymer concentration in solution is decreased, and finally, all polymer chains are adsorbed on the surfaces. Beyond this point, the partial coverage of particle surfaces takes place and strong interactions are generated between particles by polymer bridging. Since the stable suspensions are converted to highly flocculated systems, the viscosity is increased and the flow becomes shear-thinning. The concentration effect of silica particles on the viscosity behavior of suspensions can be explained by a combination of viscosity decrease in solution due to polymer adsorption and viscosity increase due to flocculation.  相似文献   

19.
Water vapor adsorption and heats of water wetting are studied for hydrophilic quartz, hydrophobic-hydrophilic talc, and hydrophobized Silochrom samples. Water contact angles on the materials under examination are found. The surface thermodynamic parameters of the sorbents are calculated from the data obtained. It is shown that boundary water layers on hydrophilic quartz surface are ordered to a higher extent, while those on hydrophobic basal surfaces of talc particles and hydrophobic surfaces of modified Silochrom samples are ordered to a lower extent relative to liquid water. An empirical equation relating the surface pressure of water films adsorbed on hydrophilic high-energy surfaces with the surface free energy of the latter is proposed. The values of surface free energy are estimated from this equation for a number of important hydrophilic adsorbents.  相似文献   

20.
A generalized model has been proposed to describe the stability of polymer colloids stabilized with ionic surfactants by accounting simultaneously for the interactions among three important physicochemical processes: colloidal interactions, surfactant adsorption equilibrium, and association equilibria of surface charge groups with counterions at the particle-liquid interface. A few Fuchs stability ratio values, determined experimentally for various salt types and concentrations through measurements of the doublet formation kinetics, are used to estimate the model parameters, such as the surfactant adsorption and counterion association parameters. With the estimated model parameters, the generalized model allows one to monitor the dynamics of surfactant partitioning between the particle surface and the disperse medium, to analyze the variation of surface charge density and potential as a function of the electrolyte type and concentration, and to predict the critical coagulant concentration for fast coagulation. Three fluorinated polymer colloids, stabilized by perfluoropolyether-based carboxylate surfactant, have been used to demonstrate the feasibility of the proposed colloidal stability model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号