首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 109 毫秒
1.
在阴离子表面活性剂十二烷基硫酸钠(SDS)和硫代乙酰胺(TAA)存在下,Ag 和S2-反应生成较稳定的Ag2S纳米微粒。它在470nm处产生1个较强的荧光峰,在470nm处产生1个共振散射峰。TAA和Ag 浓度对体系荧光强度的影响与此两种物质浓度对共振散射强度的影响一致,随着Ag 浓度(0~8·0×10-5mol·L-1)增大荧光和共振散射光强度均线性增大。实验结果表明,荧光与共振散射之间存在相关性。此荧光为液相Ag2S纳米微粒产生的固液界面荧光。  相似文献   

2.
纳米银胶的光化学制备及其共振散射光谱研究   总被引:28,自引:1,他引:27  
采用紫外光化学法制备了银胶 ,它的最强共振散射峰在 470nm处 ,最大吸收峰为 412 2nm。在共振散射波长 470nm处 ,银浓度在 0 45 6~ 9 12 μg·mL-1范围内与所得银胶的共振散射光强度呈良好线性关系。首次采用光化学法合成了稳定的蓝色银胶 ,其最强共振散射峰位于 470nm ,在 397 4和 6 2 3 4nm处有两个较强的吸收峰。  相似文献   

3.
罗丹明6G缔合微粒共振散射光谱法测定过氧化氢   总被引:3,自引:2,他引:1  
在0.020mol.L-1HCl-4.0×10-4mol.L-1KI-1.6×10-5mol.L-1Mo(Ⅵ)介质中,罗丹明6G(RhG)在540nm处有1个荧光峰,在540nm处有1个同步荧光峰。当有H2O2存在时,H2O2与过量的I-反应生成I3-,I3-与RhG形成缔合微粒,在320,400,595nm处产生3个共振散射(RS)峰;而在540nm处荧光峰猝灭。H2O2浓度在0.068~34μg.mL-1范围内与400nm波长处的共振散射光强度呈线性关系。据此建立了一个测定水中H2O2的共振散射光谱分析法。光谱研究结果表明,(RhG-I3)n缔合微粒和界面的形成是导致体系RS增强和荧光猝灭的根本原因。  相似文献   

4.
研究了罗丹明6G(R6G)的荧光光谱、共振散射光谱和吸收光谱,讨论了共振光散射与共振荧光的区别与联系。在罗丹明6G水溶液的三维荧光等高线光谱中,瑞利散射线与荧光等高线有部分相交。共振散射峰(544nm)介于荧光激发峰(530nm)和发射峰(552nm)之间。由光偏振实验,测得R6G共振散射光谱544nm处的偏振度P为0.0105。上述实验结果证明,R6G的共振散射峰主要是共振荧光。共振光散射信号随pH值增大而增强的机理是R6G酸碱平衡移动导致荧光型体的形成。由于自吸收的影响,荧光强度、共振散射光强度与R6G浓度之间不是严格的线性关系。  相似文献   

5.
免疫球蛋白G的免疫共振散射光谱分析   总被引:6,自引:0,他引:6  
在pH 7.0 Tris-HCl缓冲溶液中及聚乙二醇-20000存在下,羊抗兔IgG与兔IgG的免疫复合物可聚集形成疏水的免疫复合物微粒,在330, 400, 520 nm处有三个共振散射峰,在470 nm有一个同步散射峰。IgG浓度在1.33~133.3 μg·mL-1范围内与470 nm处的散射强度呈线性。借此用于定量分析血清IgG, 结果满意。方法检出限为0.99 μg·mL-1。  相似文献   

6.
CoFe2O4纳米粒子的共振散射光谱研究   总被引:9,自引:0,他引:9  
液相纳米粒子CoFe2O4在400,470,510,800和940nm产生五个共振散射峰。它是一种非线性光散射介质。当激发波长为330nm时,CoFe2O4纳米粒子分别在于330,660和990nm产生一个共振散射峰、一个1/2频散射峰和一个1/3分频散射峰;当激发波长为800nm时,在800nm产生一个共振散射峰,而在400nm产生一个较该共振散射峰更强的2倍频散射峰。分频散射和倍频散射与共振散射有相似的散射行为。根据建立的灰白粒子体系共振散射光谱原理定性解析了CoFe2O4纳米粒子体系的共振散射光谱。  相似文献   

7.
基于AgI2-缔合微粒共振散射效应测定阳离子表面活性剂   总被引:2,自引:2,他引:0  
在pH 3.5 NaAc-HCl介质中,Ag 与过量的I-形成可溶性AgOI2-;当十六烷基三甲基溴化铵(CT-MAB)与AgI2-共存时形成粒径为700 nm的(CTMA-AgI2)n缔合微粒,在360 nm处产生一个共振散射峰,在470 m处产生一同步散射峰.CTMAB浓度cCTMAB在2.0~50.0×10-7mol·L-1范围内与散射光强度I360nm呈线性关系,回归方程为I360nm=2.03×107 cCTMAB 0.48,相关系数r为0.998 5,检出限为8.0×10-8mol·L-1.据此建立了一个测定阳离子表面活性剂含量的共振散射光谱法,用于水样分析,结果满意.共振散射光谱和激光散射研究表明,CTMAB 与AgI2-可通过静电力形成疏水性的CTMA-AgI2缔合物分子,该缔合物分子自动聚集形成稳定的(CTMA-AgI2)n缔合微粒.由于该缔合微粒仅在360 nm处产生共振散射效应,故体系呈乳白色.  相似文献   

8.
金纳米薄膜的荧光光谱特性   总被引:2,自引:1,他引:1  
采用电化学方法制备了胶体盒纳米球状颗粒,并利用自组装方法在石英玻璃村底上镀制了金纳米薄膜。在室温下测得其紫外-可见吸收光谱和荧光发射光谱。在吸收光谱中观察到两个吸收峰,其中610nm、处的吸收峰来源于凝聚金纳米颗粒纵向的表面等离子体共振。在荧光发射光谱中也观察到与纵向表面等离子体共振有关的长波段的发射峰。增加激励光强度或增加薄膜中金粒子散密度都将导致新荧光发射峰的产生.这表明金纳米薄膜中存在循环多重散射,并由此引发了荧光发射峰数目和强度的变化。  相似文献   

9.
罗丹明B的共振散射光谱研究   总被引:8,自引:0,他引:8  
研究了罗丹明B(RhB)的共振光散射的特性与机理。在 pH =- 0 38至 pH 4 10的酸性溶液中 ,共振光散射信号随pH值增大而增强 ,近中性时散射强度达到最大。散射强度随波长的变化不符合瑞利散射定律。RhB的荧光激发光谱与发射光谱有部分重叠 ,共振散射峰处于荧光激发峰和荧光发射峰之间。在三维荧光等高线光谱图中 ,瑞利散射线与荧光等高线相交。在光偏振实验中 ,测得共振散射光的偏振度P≈ 0 1。上述实验结果揭示RhB的共振散射光主要是共振荧光。共振光散射信号随 pH值增大而增强的机理是RhB酸碱平衡移动导致荧光型体的形成。RhB的共振散射峰位于吸收曲线轮廓之中 ,共振光散射受光吸收的影响 ,因此 ,散射光强度与浓度之间不是严格的线性关系。  相似文献   

10.
金纳米颗粒的紫外、蓝紫光波段光致荧光特性   总被引:4,自引:1,他引:3  
采用电化学方法制备出粒径在20~30 nm的悬浮胶体金纳米颗粒。研究了金纳米颗粒的荧光发射光谱特性。在377和459 nm观察到两个荧光发射峰,分别位于紫外和蓝紫光波段,对应的敏感激发波长为220 nm。减小激发光强度或降低金纳米颗粒的粒子数密度都会使377 nm处的荧光发射峰强度减弱。位于459 nm处的荧光发射峰对激发光强度和颗粒数密度变化更为敏感,并且在激发光强度降低到一定阈值或粒子数密度高于一定阈值后消失。随着激发光强度的增加,位于377和459 nm处的两发射峰强度逐渐靠近,其比值逼近于1。实验结果与随机分布介质的自组织散射式谐振腔理论符合得较好。这表明胶体金纳米颗粒中存在循环多重散射,并由此引发了蓝光及紫外波段的荧光增强,这在光存储和全色显示等方面具有潜在的应用前景。  相似文献   

11.
在 0 0 2mol·L-1HCl介质中 ,红色 [PtI6]2 -配合物离子与奎宁作用生成紫红色PtI6 奎宁缔合微粒 ,在 310 ,4 0 0 ,4 70 ,6 10nm处产生 4个瑞利散射峰 ;在 35 0~ 70 0nm波长范围的吸光度值均增大 ,4 5 0nm荧光峰猝灭。在选定条件下 ,奎宁浓度在 0~ 4 0× 10 -6mol·L-1范围内与A62 0nm成正比 ,摩尔吸光系数ε62 0nm为 1 31× 10 4L·mol-1·cm-1。实验结果表明 ,奎宁缔合微粒的形成是导致瑞利散射信号增强和荧光猝灭的根本原因 ,而缔合微粒的颜色是共振散射所致。  相似文献   

12.
CdTe量子点的光谱特性及其应用   总被引:3,自引:0,他引:3  
研究了水相CdTe量子点的共振散射光谱、荧光光谱和吸收光谱特性。结果表明,随着量子点粒径(d)的增大,CdTe量子点的荧光峰(λF)发生红移,吸收峰也发生红移,且吸收峰(λA)的峰形变宽、吸光度(A)降低,λ与ln(d)均存在较好的线性关系。其函数关系为λA =126.74 ln(d)+395.92和λF=155.01 ln(d) +415.5。共振散射光谱研究表明, 共振散射波长λR与CdTe量子点粒径(3.8~8.6 nm)的对数存在较好的线性关系,线性回归方程为λR=148.37 ln(d)+418.08, 相关系数为0.995 2,而且同一粒径的CdTe量子点,共振散射强度与CdTe量子点的浓度也存在良好的线性关系,粒径为3.8 nm的CdTe量子点在波长597 nm处的线性范围,回归方程,相关系数分别为:22.5~180.0 μmol·L-1;I597 nm=0.572 1c+5.884,0.997 5。共振散射光谱法作为检测CdTe量子点粒径的一种新方法,具有简便快速及较好的应用价值。  相似文献   

13.
在pH 6.6的磷酸盐缓冲溶液中,荧光桃红在520 nm有一个吸收峰,在560 nm处有一个荧光峰。当有小檗碱存在时,荧光桃红与小檗碱可形成稳定的紫红色缔合微粒。其最大吸收波长在560 nm,小檗碱浓度(c)在6.65×10-7~7.71×10-5mol·L-1范围内符合比尔定律,回归方程为A=1.051×104c+0.008 6,相关系数为0.996 9, 摩尔吸光系数为2.21×104 L·mol-1·cm-1。荧光桃红-小檗碱体系的光谱特性研究表明,小檗碱与荧光桃红主要通过静电引力形成疏水性的缔合微粒,在385,470,586 nm产生3个共振散射峰,560 nm荧光峰的降低是由于复合微粒形成所致。  相似文献   

14.
CaMoO_4:Tb~(3+)发光材料的制备和发光性质的研究   总被引:1,自引:0,他引:1  
用共沉淀法制备了样品CaMoO_4:Tb~(3+)的前驱物,经TG-DTA测试表明:样品在850℃时有能量吸收峰,即达到样品反应的活化点。XRD谱图分析显示,焙烧后样品CaMoO_4:Tb~(3+)为CaMoO_4的白钨矿结构,但峰位发生了右移,说明晶体内部产生了微小的晶体缺陷,推测该缺陷可能是由晶胞内2个Tb~(3+)取代了3个Ca~(2+)形成空穴而引发的。通过对激发谱图的测试发现,此种缺陷结构有利于使MoO_4~(2-)发射特征峰(488 nm)的能量有效地传递给Tb~(3+),使Tb~(3+)的4f电子发生跃迁,特别使Tb~(3+)的~7F_6→~5D_4(488 nm)电子跃迁大大加强,因而在样品CaMoO_4:Tb~(3+)的发射谱图(λ_(ex)=488 nm)中,自激活荧光体MoO_4~(2-)的发射强度被大大减弱,而Tb~(3+)的~5D_4→~7F_5(544 nm)跃迁的绿光发光强度被大大增强,使该材料成为有潜在应用价值的发光材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号