首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liquid-Liquid-and Vapor-Liquid-Equilibria in binary and ternary systems consisting of n-heptane, ethylbenzene and sulfolane were investigated experimentally at 312.57 and 332.45 K in three different types of apparatus using analytical or synthetic methods, static or dynamic operation and measuring temperatures or differential temperatures, pressures or differential pressures. Densities in binary mixtures consisting of n-heptane-ethyl-benzene, sulfolane—ethylbenzene were measured with an oscillating U-tube densimeter as a function of concentration at 293.25 and 303.6 K.Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.  相似文献   

2.
The use of subcritical water as an eluent for reversed-phase liquid chromatography is further explored. Shape selectivity as well as thermodynamic values for solute transfer were measured and compared to those seen with traditional ambient methanol/water and acetonitrile/water mobile phases. Linear solvation energy analysis was also used to analyze extrapolated values of the retention factor in pure water at ambient temperatures (kwkw) for subcritical water and ambient hydroorganic mobile phases. Results indicate that it is likely that a large disruption in the hydrogen-bonding network of water at high temperatures causes unique chromatographic selectivity, as well as prohibits accurate extrapolation from high temperature to ambient conditions using pure water. Additionally, subcritical water was not found to be a suitable mobile phase for determining kwkw for use in estimating octanol/water partition coefficients.  相似文献   

3.
The degradation of polycaprolactone (PCL) was studied in subcritical and supercritical toluene from 250 to 375 °C at 50 bar. The degradation was also investigated in various solvents like ethylbenzene, o-xylene and benzene at 325 °C and 50 bar. The effect of pressure on degradation was also evaluated at 325 °C at various pressures (35, 50 and 80 bar). The variation of molecular weight with time was analyzed using gel permeation chromatography and modeled using continuous distribution kinetics to evaluate the degradation rate coefficients. PCL degrades by random chain scission in subcritical conditions (250-300 °C) and by chain end scission (325-375 °C) in supercritical conditions in toluene. The degradation of PCL in other solvents at 325 °C was by chain end scission under both subcritical and supercritical conditions indicating that the mode of scission depends on the temperature and not on the supercriticality of the solvent. The thermogravimetric analysis of PCL was investigated at various heating rates (2-24 °C/min) and the activation energy was determined using Friedman, Ozawa and Kissinger methods. It was shown that PCL degrades by random scission at lower temperatures and by chain end scission at higher temperatures again indicating that the mode of scission is dependent on the temperature.  相似文献   

4.
In this work, a green extraction technique, subcritical water extraction (SBWE), was employed to extract active pharmaceutical ingredients (APIs) from an important Chinese medicinal herb, Salvia miltiorrhiza (danshen), at various temperatures. The APIs included tanshinone I, tanshinone IIA, protocatechualdehyde, caffeic acid, and ferulic acid. Traditional herbal decoction (THD) of Salvia miltiorrhiza was also carried out for comparison purposes. Reproduction assay of herbal extracts obtained by both SBWE and THD were then conducted on Caenorhabditis elegans so that SBWE conditions could be optimized for the purpose of developing efficacious herbal medicine from Salvia miltiorrhiza. The extraction efficiency was mostly enhanced with increasing extraction temperature. The quantity of tanshinone I in the herbal extract obtained by SBWE at 150 °C was 370-fold higher than that achieved by THD extraction. Reproduction evaluation revealed that the worm reproduction rate decreased and the reproduction inhibition rate increased with elevated SBWE temperatures. Most importantly, the reproduction inhibition rate of the SBWE herbal extracts obtained at all four temperatures investigated was higher than that of traditional herbal decoction extracts. The results of this work show that there are several benefits of subcritical water extraction of medicinal herbs over other existing herbal medicine preparation techniques. Compared to THD, the thousand-year-old and yet still popular herbal preparation method used in herbal medicine, subcritical water extraction is conducted in a closed system where no loss of volatile active pharmaceutical ingredients occurs, although analyte degradation may happen at higher temperatures. Temperature optimization in SBWE makes it possible to be more efficient in extracting APIs from medicinal herbs than the THD method. Compared to other industrial processes of producing herbal medicine, subcritical water extraction eliminates toxic organic solvents. Thus, subcritical water extraction is not only environmentally friendly but also produces safer herbal medicine for patients.  相似文献   

5.
A hybrid stationary phase, XTerra MS C18, has been evaluated for the high-temperature reversed-phase liquid chromatography of selected hydrophobic steroids. The effects on the retention and efficiency at temperatures up to 130°C and eluent compositions from methanol–water mixtures to superheated water were studied. The thermodynamic data of the separations were determined. It was shown that increasing the temperature enabled the percentage of methanol to be reduced. High mobile-phase flow rates could be used, but for these non-polar analytes, the retention times with superheated water as the eluent were still high.  相似文献   

6.
Subcritical water has been recently employed as the mobile phase to eliminate the use of organic solvents in reversed-phase liquid chromatography. Although the influence of temperature on retention in subcritical water chromatography has been reported, the temperature effect on peak width and column efficiency has not yet been quantitatively studied. In this work, several polar and chlorinated compounds are separated using pure subcritical water on Zorbax RX-C8, PRP-1 (polystyrene-divinylbenzene), Hypersil ODS, and ZirChrom-polybutadiene columns. Isothermal separations are performed at temperatures ranging from 60 degrees C to 160 degrees C. The retention time and peak width of analytes are reduced with increasing temperature. However, the column efficiency is either improved or almost unchanged with the increasing temperature in the low-temperature range (lower than the 100 degrees C to 120 degrees C range), but it is decreased when temperature is further raised in the high-temperature range (higher than the 100 degrees C to 120 degrees C range). Therefore, a maximum in column efficiency is obtained at temperatures within the 100 degrees C to 120 degrees C range in most cases.  相似文献   

7.
亚临界水萃取在分析化学中的应用   总被引:11,自引:0,他引:11  
吴仁铭 《化学进展》2002,14(1):32-36
亚临界水的介电常数ε随温度增加而减少,在250℃时ε值只有27(介于甲醇与乙醇之间),比常温常压下下水的介电常数ε=80下降了许多。亚临界水极性的减弱,使它对中极性和非极性有机化合物的溶解度大大增加,可以定量萃取出固体试样中的多环芳烃和多氯联苯化合物。另外,亚临界水也可以作为反相高效液体色谱的洗脱液。  相似文献   

8.
Pure subcritical water has been found to be an efficient mobile phase for reversed-phase separations of both polar and moderately polar compounds. However, subcritical water must be modified with organic solvent in order to elute nonpolar analytes in an efficient manner. In this study, the separation of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and benzene, toluene, and p-xylene (BTX) was performed by using heated methanol-water mixtures as the mobile phase. Temperatures employed in this study ranged from 21 to 140 °C, while the percentage of methanol in the mobile phase ranged from 52 to 90%. The retention times of analytes were matched under different mobile phase conditions by increasing the temperature and decreasing the percentage of methanol in the mobile phase.  相似文献   

9.
A rapid and simple method has been developed for determination of inorganic elements in airborne particulate matter (PM10) by using acidified subcritical water and ICP–OES. Elements such as Al, As, B, Ba, Cd, Cu, Fe, Mn, Pb, Se, and Zn were rapidly and efficiently extracted from PM10 samples with a solution of 0.1 mol L–1 HNO3 under subcritical conditions. The method requires approximately 5% of the amount of acid used in the standard microwave extraction procedure. The material selected for the subcritical extraction manifold was poly ether ether ketone (PEEK), to avoid sample contamination with elements present in previously reported stainless-steel manifolds. The extraction temperature, time of static and dynamic extraction, and flow rate of acidified water were studied keeping the pressure controlled at about 1,500 psig. The efficiency of extraction of most of the analytes increased with temperature, tending to quantitative extraction at temperatures near 150°C. After the extraction process the analytes were determined directly in the extract by ICP–OES. When the method was compared with the USEPA counterpart, the results indicate that under optimized conditions (static extraction time: 15 min, dynamic extraction time: 30 min, flow rate: 2 mL min–1) the analytes were extracted with recoveries between 73 and 158%. Alternatively, by using an extraction time of 15 min, the method could be used to screen for all the elements, with recoveries over 50%. The developed method was applied to the determination of inorganic elements in airborne particulate matter in the atmosphere of Santiago, Chile.  相似文献   

10.
Summary The kinetics of the oxidation of aqua(ethylenediaminetetraacetato)chromium(III) by periodate have been investigated in various ethanol: water mixtures in the 0–54 wt% ethanol range, at six different temperatures in the 15–40°C range. The effect of solvent on the rate and mechanism of the reaction has been studied and an innersphere mechanism for the reaction is proposed, consistent with the calculated activation parameters.  相似文献   

11.
The possibility of the combination of electrolysis and subcritical water as a novel electrolyte was investigated. A stainless steel reactor was used as an undivided electrochemical cell containing platinum as the anode and a stainless steel reactor as the cathode. At first, the effect of temperature on the electrolysis current as the main parameter was studied in a cell containing only pure water and a supporting electrolyte. It was realized that the electrolysis current (and, consequently, the electrolysis efficiency) increased linearly with temperature because of the change in viscosity and other physicochemical properties of subcritical water. As a result, at 553 K the electrolysis efficiency was over 14-fold higher than that under ambient conditions. The possibility of the applicability of the above combined techniques for the decomposition of o-xylene was also followed as a model for benzene, toluene, ethylbenzene, and xylene (BTEX) compounds. The effect of experimental conditions such as the electrolysis duration, the electrolysis voltage, and the temperature of subcritical water was investigated. Several decomposed products were identified. o-Xylene was directly electro-oxidized to 2-methylbenzyl alcohol and consecutively to the other oxidation products. Also, hydroxide ions were oxidized to oxygen molecules, where hydrogen was generated on the cathodic surface. The final oxidation product of the electro-oxidation reaction was identified as carbon dioxide. The results indicate that more than 95% of o-xylene can be decomposed under optimum conditions.  相似文献   

12.
The influence of temperature on retention and separation of cholesterol and bile acids, using reversed-phase thin-layer chromatography, was studied. As mobile phases methanol-water mixtures of various compositions were used. Chromatographic experiments were performed using vapor-saturated chambers at temperatures ranging from 5 to 60 degrees C. A linear relationship between R(M) values and temperature (1/T) as well as mobile phase composition was observed. The elution order of steroids under the conditions investigated was discussed. Each chromatogram was evaluated using simple optimization parameters and the best chromatographic conditions for the separation of multicomponent samples were chosen.  相似文献   

13.
Molar volumes and excess molar volumes were investigated from density values for {PEG 200 (1) + water (2)} and {PEG 300 (1) + water (2)} binary mixtures at temperatures from 278.15 to 313.15 K. Both systems exhibit negative excess volumes probably due to increased interactions such as hydrogen bonding and/or large differences in molar volumes of components. Volume thermal expansion coefficients were also calculated for both binary mixtures and pure solvents. The Jouyban–Acree model was used for density and molar volume correlations of the studied mixtures at different temperatures. The mean relative deviations between experimental and calculated density data were 0.02% and 0.04%, for aqueous mixtures of PEG 200 and PEG 300, respectively; whereas the corresponding values for molar volume data were 1.76% and 2.72%.  相似文献   

14.
The review shows prospects of the use of subcritical water instead of organic solvents and aqueous–organic mixtures at different stages of analysis. Subcritical water was applied to the extraction of target compounds from natural samples, such as soils, sand, and plant raw materials. The use of subcritical water expands possibilities of HPLC. The use of subcritical water as an eluent in HPLC is complicated by the possible destruction of the adsorbent and the decomposition of substances to be determined at elevated temperatures. Adsorbents based on zirconium and titanium oxides, some polymeric adsorbents, and porous graphitized carbon are stable in the medium of subcritical water. Subcritical water can be used at several stages of analysis, for example, for the extraction and subsequent chromatographic separation of analytes.  相似文献   

15.
In an effort to increase revenues from a given feedstock, valuable co-products could be extracted prior to biochemical or thermochemical conversion with subcritical water. Although subcritical water shows significant promise in replacing organic solvents as an extraction solvent, compound degradation has been observed at elevated extraction temperatures. First order thermal degradation kinetics from a model system, silymarin extracted from Silybum marianum, in water at pH 5.1 and 100, 120, 140, and 160 °C were investigated. Water pressure was maintained slightly above its vapor pressure. Silymarin is a mixture of taxifolin, silichristin, silidianin, silibinin, and isosilibinin. The degradation rate constants ranged from 0.0104 min−1 at 100 °C for silichristin to a maximum of 0.0840 min−1 at 160 °C for silybin B. Half-lives, calculated from the rate constants, ranged from a low of 6.2 min at 160 °C to a high of 58.3 min at 100 °C, both for silichristin. The respective activation energies for the compounds ranged from 37.2 kJ/gmole for silidianin to 45.2 kJ/gmole for silichristin. In extracting the silymarin with pure ethanol at 140 °C, no degradation was observed. However, when extracting with ethanol/water mixtures at and 140 °C, degradation increased exponentially as the concentration of water increased. An erratum to this article can be found at  相似文献   

16.
In this research, the stability of benzoic acid and three of its derivatives (anthranilic acid, salicylic acid, and syringic acid) under subcritical water conditions was investigated. The stability studies were carried out at temperatures ranging from 50 to 350 °C with heating times of 10–630 min. The degradation of the benzoic acid derivatives increased with rising temperature and the acids became less stable with longer heating time. The three benzoic acid derivatives showed very mild degradation at 150 °C. Severe degradation of benzoic acid derivatives was observed at 200 °C while their complete degradation occurred at 250 °C. However, benzoic acid remained stable at temperatures up to 300 °C. The degradation products of benzoic acid and the three derivatives were identified and quantified by HPLC and confirmed by GC/MS. Anthranilic acid, salicylic acid, syringic acid, and benzoic acid in high-temperature water underwent decarboxylation to form aniline, phenol, syringol, and benzene, respectively.  相似文献   

17.
Subcritical water (<374 °C and <221 bar) has unique characteristics such as dramatically decreased dielectric constant, surface tension, and viscosity with increasing temperature, allowing for dissolution and reaction of organics in high-temperature water to occur. Additionally, the dissociation constant of water at temperatures of 200-300 °C is three orders of magnitude greater than that of ambient water, which may also contribute to the reactivity of subcritical water with certain organic compounds. In this study, the degradation and oxidation of phenanthrene in subcritical water were investigated. Both deionized water and water with 3% hydrogen peroxide were used in the degradation and oxidation studies. The effect of temperature on degradation efficiency has been determined with a temperature range of 100-350 °C. When the temperature was increased from 150 to 350 °C, the amount of phenanthrene degraded varied from 6 to 243 μg in each milliliter of deionized water. However, these quantities were increased to 195 μg at 150 °C and 3680 μg at 350 °C in each milliliter of water with 3% hydrogen peroxide. Several degradation products including phenol, benzoic acid, and ketones were identified by using gas chromatography/mass spectrometry (GC/MS).  相似文献   

18.
《Fluid Phase Equilibria》2004,217(2):181-188
Infrared spectra of binary mixtures of water with toluene and ethylbenzene have been measured at temperatures and pressures in the 473–623 K and 100–350 bar ranges, respectively. Concentrations of water and hydrocarbons in the hydrocarbon-rich phase have been estimated from the integrated band intensities, and using these results, densities of the hydrocarbon-rich phase have been obtained as a function of temperature and pressure. In order to characterize the density of the hydrocarbon-rich phase, the experimental densities have been compared with the average densities before mixing, which were calculated from the literature densities of pure water and pure hydrocarbon with the experimental concentrations. All the experimental densities of the mixtures are lower than the average densities before mixing at the same condition. Relative volume change for mixing has been estimated and an anomalously large increase in volume has been found in the vicinity of the critical region of the water–hydrocarbon mixtures. This volumetric behavior is very similar to that previously found for water–benzene mixtures, and may be characteristic of the critical behavior of fluid mixtures of water and hydrocarbons.  相似文献   

19.
As a part of a study of the colloidal structures present in nonionic ointments, the interaction between polyoxyethylene and water is investigated. A series of mixtures of polyoxyethylene 1550 and water is studied using differential scanning calorimetry. Heating as well as cooling experiments are performed. The effects of the heat of mixing, supercooling and melting point depression on the measured enthalpy changes are discussed. From the non-freezing water fraction it is concluded that 2 water molecules per oxyethylene unit are tightly bound to the polymer chain. The observed differences between the cooling and the heating curves lead to a possible explanation for the alterations in the samples occurring at low temperatures. A hydrate structure of polyoxyethylene at low temperatures is proposed. Finally, comment is made on the phase diagram of the system polyoxyethylene/water.  相似文献   

20.
Sodium alginate and hydroxyethylcellulose blend membranes were prepared by solution casting, crosslinked with glutaraldehyde and urea–formaldehyde–sulfuric acid mixture. Crosslinking was confirmed by Fourier transform infrared spectroscopy, while the blend compatibility was studied by differential scanning calorimetry and scanning electron microscopy. Membranes were tested for pervaporation separation of feed mixtures ranging from 10 to 50 mass% water in water + 1,4-dioxane and water + tetrahydrofuran mixtures at 30 °C. For 10 mass% of the feed mixture, pervaporation experiments were also carried out at higher temperatures (40 and 50 °C). By increasing the temperature, a slight increase in flux with a considerable decrease in selectivity was observed for all the membranes and for both the mixtures. The blend membranes exhibited different pervaporation performance for both the binary mixtures investigated. For water + 1,4-dioxane mixture, the pervaporation performance did not improve much after blending, whereas for water + tetrahydrofuran mixture, the pervaporation performance has improved considerably over that of plain sodium alginate membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号