首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a new approach to supergravity we consider the gauge theory of the 14-dimensional supersymmetry group. The theory is constructed from 14×4 gauge fields, 4 gauge fields being associated with each of the 14 generators of supersymmetry. The gauge fields corresponding to the 10 generators of the Poincaré subgroup are those normally associated with general relativity, and the gauge fields corresponding to the 4 generators of supersymmetry transformations are identified with a Rarita-Schwinger spinor. The transformation laws of the gauge fields and the Lagrangian of lowest degree are uniquely constructed from the supersymmetry algebra. The resulting action is shown to be invariant under these gauge transformations if the translation associated field strength vanishes. It is shown that the second-order form of the action, which is the same as that previously proposed, is invariant without constraint.  相似文献   

2.
R. P. Malik  B. P. Mandal 《Pramana》2009,72(3):505-515
We demonstrate that the nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry invariance of the Lagrangian density of a four (3 + 1)-dimensional (4D) non-Abelian 1-form gauge theory with Dirac fields can be captured within the framework of the superfield approach to BRST formalism. The above 4D theory, where there is an explicit coupling between the non-Abelian 1-form gauge field and the Dirac fields, is considered on a (4,2)-dimensional supermanifold, parametrized by the bosonic 4D spacetime variables and a pair of Grassmannian variables. We show that the Grassmannian independence of the super-Lagrangian density, expressed in terms of the (4,2)-dimensional superfields, is a clear signature of the presence of the (anti-)BRST invariance in the original 4D theory.   相似文献   

3.
We perform the dual transformation of theYang-Mills theory in three dimensions using the Wilson action on the cubic lattice. The dual lattice is made of tetrahedra triangulating a 3-dimensional curved manifold but which is embedded into a flat 6-dimensional space [for the SU(2) gauge group]. In the continuum limit, the theory can be reformulated in terms of 6-component gauge-invariant scalar fields having the meaning of the external coordinates of the dual lattice sites. These 6-component fields induce a metric and a curvature of the 3-dimensional dual-color space. The Yang-Mills theory can also be rewritten as a quantum gravity theory with the Einstein-Hilbert action but with a purely imaginary Newton constant plus a homogeneous “ether” term. The theory can be formulated in a gauge-invariant and local form without explicit color degrees of freedom.  相似文献   

4.
It is shown that gravitationlike gauge fields can result from compact, internal symmetry groups. In particular, when the global duality invariance of the vacuum Maxwell's equations is made into a local symmetry using the methods of Yang and Mills, the gauge field is found to have certain properties characteristic of gravity. It is conjectured that a realistic theory of gravity can be constructed as a gauge theory based on a compact, internal symmetry group.  相似文献   

5.
The spherically symmetric gauge fields with a compact gauge group over 4-dimensional Minkowski space are determined completely. Expressions for the gauge potentials of these fields are obtained.  相似文献   

6.
It is argued that the derivative expansion is a suitable method to deal with finite temperature field theory, if it is restricted to spatial derivatives only. Using this method, a simple and direct calculation is presented for the radiatively induced Chern–Simons-like piece of the effective action of (2+1)-dimensional fermions at finite temperature coupled to external gauge fields. The gauge fields are not assumed to be subjected to special constraints, and in particular, they are not required to be stationary nor Abelian.  相似文献   

7.
In the context of the formalism proposed by Stelle-West and Grignani-Nardelli, it is shown that Chern-Simons supergravity can be consistently obtained as a dimensional reduction of (3 + 1)-dimensional supergravity, when written as a gauge theory of the Poincaré group. The dimensional reductions are consistent with the gauge symmetries, mapping (3 + 1)-dimensional Poincaré supergroup gauge transformations onto (2 + 1)-dimensional Poincaré supergroup ones.  相似文献   

8.
We extend the Olesen approach to confinement, originally proposed for SU(∞) gauge theory, to the SU(2) group. We perform Monte Carlo calculations of the spectral density, which describes the distribution of eigenvalues of the Wilson loop in the SU(2) lattice gauge theory (LGT), for square loops up to size 4 × 4. Our results indicate the onset of disorder in the 4-dimensional LGT so that at weak coupling confinement is due to non-abelian fluctuations of the gauge field. We describe the Monte Carlo data by formulae of the 2-dimensional LGT with some effective coupling constant. We formulate how this effective coupling constant should depend on the size of the loop in order that the Olesen hypothesis about the dimensional reduction (i.e. approximate reduction of the 4-dimensional LGT to the effective 2-dimensional LGT in the confinement region) would be held. Using the strong-coupling expansion where the Olesen hypothesis holds in fourteen orders, we perform quantitative estimates. The density of simple vortices up to size 4 × 4 is calculated. A connection between the definitions of spectral densities for the SU(∞) and SU(2) groups is considered. Explicit formulae for the spectral density in the 2-dimensional SU(2) LGT are derived.  相似文献   

9.
Torsion in Kaluza-Klein theory is considered. It is shown that a part of the components of the torsion tensor can be identified with the components of gauge fields different from the gauge fields of the Kaluza-Klein theory, while the other part can be identified with the field strength tensor of these gauge fields. The gauge fields introduced this way acquire a geometrically induced mass. It is shown that the torsion in the internal space allows to generate any a priori given mass in Kaluza-Klein theory.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 11–15, June, 1988.In conclusion, I want to thank Yu. S. Vladimirov for a discussion of the results of this paper.  相似文献   

10.
The Migdal renormalization group approach is applied to a finite temperature lattice gauge theory. Imposing the periodic boundary condition in the timelike orientation, the phase structure of the finite temperature lattice gauge system with a gauge groupG in (d+1)-dimensional space is determined by two kinds of recursion equations, describing spacelike and timelike correlations, respectively. One is the recursion equation for ad-dimensional gauge system with the gauge groupG, and the other corresponds to ad-dimensional spin system for which the effective theory is described by the nearest neighbor interaction of the Wilson lines. Detailed phase structure is investigated for theSU(2) gauge theory in (3+1)-dimensional space. Deconfinement phase transition is obtained. Using the recursion equation for the three dimensional spin system of the Wilson lines, it is shown that the flow of the renormalization group trajectories leads to a phase transition of the three dimensional Ising model.  相似文献   

11.
Physicists have been interested in quantization of spinor and vector free fields in 4-dimensional de Sitter space-time,in ambient space notation.The Gupta-Bleuler formalism has been extensively applied to the quantization of gauge invariant theories.The field equation of the massless spin-3/2 fields is gauge invariant in de Sitter space.In this paper,we study the quantization of massless spin-3/2 gauge fields in de Sitter space-time by the Gupta-Bleuler formalism.This triplet carries an indecomposable representation of the de Sitter group.  相似文献   

12.
The covariance principle of general relativity is extended to internal space. Associated gauge fields and tensors are systematically described, whereupon the variational principle is set up for all gauge fields by applying a Palatini-type method, thereby giving rise to an attractive self-contained theory in which the Einstein equations are intrinsically synthesized with the generalized Yang-Mills equations. General gauge-covariant physical field equations are formulated, showing that currents, external + internal spin tensors, and energy-momentum tensors can be introduced unambiguously under these general conditions and that the associated conservation laws can be derived. The electromagnetic field finds its gauge-geometric origin as the gauge field related to internal densities. To be operative with the tensor indices of external and internal types, this general theory must be bimetric. The assumptions that the gauge-covariant derivatives of metric tensors should vanish simplify the theory to the level of a Finslerian gauge approach.  相似文献   

13.
It is shown that the gauge theory is equivalent to the chiral theory on the path. As a consequence the results obtained for chiral theory inD-space-time dimension may be carried over for gauge fields inD+1 dimensions. In particular, this leads to the integrability of the classical 3-dimensional Yang-Mills theory in terms of the path variables.  相似文献   

14.
The derivation of the exact and unique nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of the superfield approach to the BRST formalism. These nilpotent symmetry transformations are deduced for the four (3+1)-dimensional (4D) complex scalar fields, coupled to the U(1) gauge field, in the framework of an augmented superfield formalism. This interacting gauge theory (i.e. QED) is considered on a six (4,2)-dimensional supermanifold parametrized by four even spacetime coordinates and a couple of odd elements of the Grassmann algebra. In addition to the horizontality condition (that is responsible for the derivation of the exact nilpotent symmetries for the gauge field and the (anti-)ghost fields), a new restriction on the supermanifold, owing its origin to the (super) covariant derivatives, has been invoked for the derivation of the exact nilpotent symmetry transformations for the matter fields. The geometrical interpretations for all the above nilpotent symmetries are discussed, too. PACS 11.15.-q, 12.20.-m, 03.70.+k  相似文献   

15.
Peter Woit 《Nuclear Physics B》1985,262(2):284-298
A general discussion of the topology of continuum gauge fields and the problems involved in defining and computing the topology of a lattice gauge field configuration is given. Two definitions of the topological charge for 4-dimensional SU(n) lattice gauge theory are presented. The first of these is geometrically the most straightforward, the second the most useful for efficient numerical calculations.  相似文献   

16.
We provide an alternative to the gauge covariant horizontality condition, which is responsible for the derivation of the nilpotent (anti-) BRST symmetry transformations for the gauge and (anti-) ghost fields of a (3+1)-dimensional (4D) interacting 1-form non-Abelian gauge theory in the framework of the usual superfield approach to the Becchi–Rouet–Stora–Tyutin (BRST) formalism. The above covariant horizontality condition is replaced by a gauge invariant restriction on the (4,2)-dimensional supermanifold, parameterised by a set of four spacetime coordinates, xμ(μ=0,1,2,3), and a pair of Grassmannian variables, θ and θ̄. The latter condition enables us to derive the nilpotent (anti-) BRST symmetry transformations for all the fields of an interacting 1-form 4D non-Abelian gauge theory in which there is an explicit coupling between the gauge field and the Dirac fields. The key differences and the striking similarities between the above two conditions are pointed out clearly. PACS 11.15.-q; 12.20.-m; 03.70.+k  相似文献   

17.
We consider an external gauge potential minimally coupled to a renormalisable scalar theory on 4-dimensional Moyal space and compute in position space the one-loop Yang–Mills-type effective theory generated from the integration over the scalar field. We find that the gauge-invariant effective action involves, beyond the expected noncommutative version of the pure Yang–Mills action, additional terms that may be interpreted as the gauge theory counterpart of the harmonic oscillator term, which for the noncommutative ϕ4-theory on Moyal space ensures renormalisability. The expression of a possible candidate for a renormalisable action for a gauge theory defined on Moyal space is conjectured and discussed.  相似文献   

18.
We investigate discrete symmetries in theories of higher-dimensional (d > 4) gravity and their consequences for the reduced four-dimensional theory, obtained for a ground state which is a direct product of four-dimensional Minkowski space and a compact d ? 4 dimensional internal space. If the action of pure d-dimensional gravity coupled to spinors is invariant under time reversal or reflection of an odd number of spacelike co-ordinates, the reduced four-dimensional theory has a non-trivial parity or CT symmetry not consistent with observation. A non-trivial d-dimensional charge conjugation results in an unwanted doubling of the four-dimensional fermion spectrum. As a consequence, realistic theories can only be obtained for Majorana-Weyl spinors in d = 2 mod 8 dimensions. The constraints are less stringent if supplementary fields are introduced in d dimensions. For d = 11 supergravity, for example, parity and CT invariance can be broken by a non-vanishing field strength of the totally antisymmetric three-index tensor.A ground state invariant under reflections of “internal” co-ordinates often gives rise to a non-trivial charge conjugation in four dimensions. We find that the ground state of a realistic Kaluza-Klein theory should not be invariant under any non-trivial internal co-ordinate reflection (which cannot be obtained by a gauge transformation). We finally comment on a possible solution of the strong-CP problem from Kaluza-Klein theories and discuss prospectives for finding internal spaces admitting chiral fermions.  相似文献   

19.
Ian-Woo Kim 《Pramana》2004,62(3):729-731
We present the relation of the 4-dimensional low energy gauge coupling and the 5-dimensional fundamental gauge coupling of bulk gauge boson in a slice of AdS5, which is orbifolded byZ 2 ×Z2. We calculate the full 1-loop corrections for the case of generic 5-dimensional scalar, Dirac fermion, and vector fields with arbitraryZ 2×Z2. For the supersymmetric case, we obtain the result more easily by using the 4-dimensional effective supergravity approach.  相似文献   

20.
Tensor, matrix, and quaternion formulations of Dirac–Kähler equation for massive and massless fields are considered. The equation matrices obtained are simple linear combinations of matrix elements in the 16-dimensional space. The projection matrix-dyads defining all the 16 independent equation solutions are found. A method of computing the traces of 16-dimensional Petiau–Duffin–Kemmer matrix product is considered. We show that the symmetry group of the Dirac–Kähler tensor fields for charged particles is SO(4, 2). The conservation currents corresponding this symmetry are constructed. We analyze transformations of the Lorentz group and quaternion fields. Supersymmetry of the Dirac–Kähler fields with tensor and spinor parameters is investigated. We show the possibility of constructing a gauge model of interacting Dirac–Kähler fields where the gauge group is the noncompact group under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号