首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The detection of 500- or 2000-Hz pure-tone signals in unmodulated and modulated noise was investigated in normal-hearing and sensorineural hearing-impaired listeners, as a function of noise bandwidth. Square-wave modulation rates of 15 and 40 Hz were used in the modulated noise conditions. A notched noise measure of frequency selectivity and a gap detection measure of temporal resolution were also obtained on each subject. The modulated noise results indicated a masking release that increased as a function of increasing noise bandwidth, and as a function of decreasing modulation rate for both groups of listeners. However, the improvement of threshold with increasing modulated noise bandwidth was often greatly reduced among the sensorineural hearing-impaired listeners. It was hypothesized that the masking release in modulated noise may be due to several types of processes including across-critical band analysis (CMR), within-critical band analysis, and suppression. Within-band effects appeared to be especially large at the higher frequency region and lower modulation rate. In agreement with previous research, there was a significant correlation between frequency selectivity and masking release in modulated noise. At the 500-Hz region, masking release was correlated more highly with the filter skirt and tail measures than with the filter passband measure. At the 2000-Hz region, masking release was correlated more with the filter passband and skirt measures than with the filter tail measure. The correlation between gap detection and masking release was significant at the 40-Hz modulation rate, but not at the 15-Hz modulation rate. The results of this study suggest that masking release in modulated noise is limited by frequency selectivity at low modulation rates, and by both frequency selectivity and temporal resolution at high modulation rates. However, even when the present measures of frequency selectivity and temporal resolution are both taken into account, significant variance in masking release still remains unaccounted for.  相似文献   

2.
Frequency resolution (viz., masking by low-pass-filtered noise and broadband noise) and temporal resolution (viz., masking by interrupted noise) were compared with hearing thresholds and acoustic reflex thresholds for four normally hearing and 13 cochlearly impaired subjects. Two models, one for frequency resolution (model I) and one for temporal resolution (model II), were introduced, and these provided a means of predicting individual frequency and temporal resolution from hearing thresholds for both normal-hearing and hearing-impaired listeners. Model I is based on the assumption that the upward spread of masking increases in cochlearly impaired hearing with an amount proportional to the hearing threshold in dB HL. Model II is based on the assumption that the poststimulatory masked thresholds return to the level of the hearing threshold within a duration of 200 ms, independent of the level of the masker and the amount of cochlear hearing loss. Model parameters were determined from results from other studies. Although some discrepancies between measured and predicted values were observed, the model predictions generally agree with measurements. Thus, to a first-order approximation, it seems possible to predict individual frequency and temporal resolution of cochlearly hearing-impaired listeners solely on the basis of their hearing thresholds.  相似文献   

3.
The focus of this study was the release from informational masking that could be obtained in a speech task by viewing a video of the target talker. A closed-set speech recognition paradigm was used to measure informational masking in 23 children (ages 6-16 years) and 10 adults. An audio-only condition required attention to a monaural target speech message that was presented to the same ear with a time-synchronized distracter message. In an audiovisual condition, a synchronized video of the target talker was also presented to assess the release from informational masking that could be achieved by speechreading. Children required higher target/distracter ratios than adults to reach comparable performance levels in the audio-only condition, reflecting a greater extent of informational masking in these listeners. There was a monotonic age effect, such that even the children in the oldest age group (12-16.9 years) demonstrated performance somewhat poorer than adults. Older children and adults improved significantly in the audiovisual condition, producing a release from informational masking of 15 dB or more in some adult listeners. Audiovisual presentation produced no informational masking release for the youngest children. Across all ages, the benefit of a synchronized video was strongly associated with speechreading ability.  相似文献   

4.
Normal-hearing (NH) listeners maintain robust speech understanding in modulated noise by "glimpsing" portions of speech from a partially masked waveform--a phenomenon known as masking release (MR). Cochlear implant (CI) users, however, generally lack such resiliency. In previous studies, temporal masking of speech by noise occurred randomly, obscuring to what degree MR is attributable to the temporal overlap of speech and masker. In the present study, masker conditions were constructed to either promote (+MR) or suppress (-MR) masking release by controlling the degree of temporal overlap. Sentence recognition was measured in 14 CI subjects and 22 young-adult NH subjects. Normal-hearing subjects showed large amounts of masking release in the +MR condition and a marked difference between +MR and -MR conditions. In contrast, CI subjects demonstrated less effect of MR overall, and some displayed modulation interference as reflected by poorer performance in modulated maskers. These results suggest that the poor performance of typical CI users in noise might be accounted for by factors that extend beyond peripheral masking, such as reduced segmental boundaries between syllables or words. Encouragingly, the best CI users tested here could take advantage of masker fluctuations to better segregate the speech from the background.  相似文献   

5.
The first part of this paper presents several experiments on signal detection in temporally modulated noise, yielding a general approach toward the concept of comodulation masking release (CMR). Measurements were made on masked thresholds of both long- and short-duration, narrow-band signals presented in a 100% sinusoidally amplitude-modulated (SAM) noise masker (modulation frequency 32 Hz), as a function of masker bandwidth from 1/3 oct up to 13/3 octs, while the masker band was geometrically centered at signal frequency. With the short-duration signals placed in the valley of the masker, a substantial CMR (i.e., a decrease of masked threshold with increasing masker bandwidth) was found, whereas for the long-duration signals CMR was smaller. Furthermore, investigations were carried out to determine whether CMR changes when the bandwidth of the signals, consisting of bandpass impulse responses, is increased. The data indicate that substantial CMR remains even when all masker bands contain a signal component, thus minimizing across-channel differences. This finding is not in line with current models accounting for the CMR phenomenon. The second part of this paper concerns signal detection in spectrally shaped noise. Also investigated was whether release from masking occurs for the detection of a pure-tone signal at a valley or a peak of a simultaneously presented masking noise with a sinusoidally rippled power spectrum, when this masker was preceded and followed by a second noise (temporal flanking burst) with an identical spectral shape as the on-signal noise. Similar to CMR effects for temporal modulations, the data indicate that coshaping masking release (CSMR) occurs when the signal is placed in a valley of the spectral envelope of the masker, whereas no release from masking is found when the signal is placed at a peak of the spectral envelope of the masker. The implications of these experiments for measures of spectral and temporal resolution are discussed.  相似文献   

6.
To assess age-related differences in benefit from masker modulation, younger and older adults with normal hearing but not identical audiograms listened to nonsense syllables in each of two maskers: (1) a steady-state noise shaped to match the long-term spectrum of the speech, and (2) this same noise modulated by a 10-Hz square wave, resulting in an interrupted noise. An additional low-level broadband noise was always present which was shaped to produce equivalent masked thresholds for all subjects. This minimized differences in speech audibility due to differences in quiet thresholds among subjects. An additional goal was to determine if age-related differences in benefit from modulation could be explained by differences in thresholds measured in simultaneous and forward maskers. Accordingly, thresholds for 350-ms pure tones were measured in quiet and in each masker; thresholds for 20-ms signals in forward and simultaneous masking were also measured at selected signal frequencies. To determine if benefit from modulated maskers varied with masker spectrum and to provide a comparison with previous studies, a subgroup of younger subjects also listened in steady-state and interrupted noise that was not spectrally shaped. Articulation index (AI) values were computed and speech-recognition scores were predicted for steady-state and interrupted noise; predicted benefit from modulation was also determined. Masked thresholds of older subjects were slightly higher than those of younger subjects; larger age-related threshold differences were observed for short-duration than for long-duration signals. In steady-state noise, speech recognition for older subjects was poorer than for younger subjects, which was partially attributable to older subjects' slightly higher thresholds in these maskers. In interrupted noise, although predicted benefit was larger for older than younger subjects, scores improved more for younger than for older subjects, particularly at the higher noise level. This may be related to age-related increases in thresholds in steady-state noise and in forward masking, especially at higher frequencies. Benefit of interrupted maskers was larger for unshaped than for speech-shaped noise, consistent with AI predictions.  相似文献   

7.
Temporal integration for a 1000-Hz signal was determined for normal-hearing and cochlear hearing-impaired listeners in quiet and in masking noise of variable bandwidth. Critical ratio and 3-dB critical band measures of frequency resolution were derived from the masking data. Temporal integration for the normal-hearing listeners was markedly reduced in narrow-band noise, when contrasted with temporal integration in quiet or in wideband noise. The effect of noise bandwidth on temporal integration was smaller for the hearing-impaired group. Hearing-impaired subjects showed both reduced temporal integration and reduced frequency resolution for the 200-ms signal. However, a direct relation between temporal integration and frequency resolution was not indicated. Frequency resolution for the normal-hearing listeners did not differ from that of the hearing-impaired listeners for the 20-ms signal. It was suggested that some of the frequency resolution and temporal integration differences between normal-hearing and hearing-impaired listeners could be accounted for by off-frequency listening.  相似文献   

8.
The present study sought to clarify the role of non-simultaneous masking in the binaural masking level difference for maskers that fluctuate in level. In the first experiment the signal was a brief 500-Hz tone, and the masker was a bandpass noise (100-2000 Hz), with the initial and final 200-ms bursts presented at 40-dB spectrum level and the inter-burst gap presented at 20-dB spectrum level. Temporal windows were fitted to thresholds measured for a range of gap durations and signal positions within the gap. In the second experiment, individual differences in out of phase (NoSπ) thresholds were compared for a brief signal in a gapped bandpass masker, a brief signal in a steady bandpass masker, and a long signal in a narrowband (50-Hz-wide) noise masker. The third experiment measured brief tone detection thresholds in forward, simultaneous, and backward masking conditions for a 50- and for a 1900-Hz-wide noise masker centered on the 500-Hz signal frequency. Results are consistent with comparable temporal resolution in the in phase (NoSo) and NoSπ conditions and no effect of temporal resolution on individual observers' ability to utilize binaural cues in narrowband noise. The large masking release observed for a narrowband noise masker may be due to binaural masking release from non-simultaneous, informational masking.  相似文献   

9.
The Speech Reception Threshold for sentences in stationary noise and in several amplitude-modulated noises was measured for 8 normal-hearing listeners, 29 sensorineural hearing-impaired listeners, and 16 normal-hearing listeners with simulated hearing loss. This approach makes it possible to determine whether the reduced benefit from masker modulations, as often observed for hearing-impaired listeners, is due to a loss of signal audibility, or due to suprathreshold deficits, such as reduced spectral and temporal resolution, which were measured in four separate psychophysical tasks. Results show that the reduced masking release can only partly be accounted for by reduced audibility, and that, when considering suprathreshold deficits, the normal effects associated with a raised presentation level should be taken into account. In this perspective, reduced spectral resolution does not appear to qualify as an actual suprathreshold deficit, while reduced temporal resolution does. Temporal resolution and age are shown to be the main factors governing masking release for speech in modulated noise, accounting for more than half of the intersubject variance. Their influence appears to be related to the processing of mainly the higher stimulus frequencies. Results based on calculations of the Speech Intelligibility Index in modulated noise confirm these conclusions.  相似文献   

10.
Using a closed-set speech recognition paradigm thought to be heavily influenced by informational masking, auditory selective attention was measured in 38 children (ages 4-16 years) and 8 adults (ages 20-30 years). The task required attention to a monaural target speech message that was presented with a time-synchronized distracter message in the same ear. In some conditions a second distracter message or a speech-shaped noise was presented to the other ear. Compared to adults, children required higher target/distracter ratios to reach comparable performance levels, reflecting more informational masking in these listeners. Informational masking in most conditions was confirmed by the fact that a large proportion of the errors made by the listeners were contained in the distracter message(s). There was a monotonic age effect, such that even the children in the oldest age group (13.6-16 years) demonstrated poorer performance than adults. For both children and adults, presentation of an additional distracter in the contralateral ear significantly reduced performance, even when the distracter messages were produced by a talker of different sex than the target talker. The results are consistent with earlier reports from pure-tone masking studies that informational masking effects are much larger in children than in adults.  相似文献   

11.
The acoustic environment of the bottlenose dolphin often consists of noise where energy across frequency regions is coherently modulated in time (e.g., ambient noise from snapping shrimp). However, most masking studies with dolphins have employed random Gaussian noise for estimating patterns of masked thresholds. The current study demonstrates a pattern of masking where temporally fluctuating comodulated noise produces lower masked thresholds (up to a 17 dB difference) compared to Gaussian noise of the same spectral density level. Noise possessing wide bandwidths, low temporal modulation rates, and across-frequency temporal envelope coherency resulted in lower masked thresholds, a phenomenon known as comodulation masking release. The results are consistent with a model where dolphins compare temporal envelope information across auditory filters to aid in signal detection. Furthermore, results suggest conventional models of masking derived from experiments using random Gaussian noise may not generalize well to environmental noise that dolphins actually encounter.  相似文献   

12.
Many competing noises in real environments are modulated or fluctuating in level. Listeners with normal hearing are able to take advantage of temporal gaps in fluctuating maskers. Listeners with sensorineural hearing loss show less benefit from modulated maskers. Cochlear implant users may be more adversely affected by modulated maskers because of their limited spectral resolution and by their reliance on envelope-based signal-processing strategies of implant processors. The current study evaluated cochlear implant users' ability to understand sentences in the presence of modulated speech-shaped noise. Normal-hearing listeners served as a comparison group. Listeners repeated IEEE sentences in quiet, steady noise, and modulated noise maskers. Maskers were presented at varying signal-to-noise ratios (SNRs) at six modulation rates varying from 1 to 32 Hz. Results suggested that normal-hearing listeners obtain significant release from masking from modulated maskers, especially at 8-Hz masker modulation frequency. In contrast, cochlear implant users experience very little release from masking from modulated maskers. The data suggest, in fact, that they may show negative effects of modulated maskers at syllabic modulation rates (2-4 Hz). Similar patterns of results were obtained from implant listeners using three different devices with different speech-processor strategies. The lack of release from masking occurs in implant listeners independent of their device characteristics, and may be attributable to the nature of implant processing strategies and/or the lack of spectral detail in processed stimuli.  相似文献   

13.
Preschoolers and adults were asked to detect a 1000-Hz signal, which was masked by a multitone complex. The frequencies and amplitudes of the components in the complex varied randomly and independently on each presentation. A staircase, cued two-interval, forced-choice procedure disguised as a "listening game" was used to obtain signal thresholds in quiet and in the presence of the multitone maskers. The number of components in the masker was fixed within an experimental condition and varied from 2 to 906 across experimental conditions. Thresholds were also measured with a broadband noise masker. Eight preschool children and eight adults were tested. Although individual differences were large, among both adults and children, there was little difference between the groups in the mean amount of masking produced by the maskers with large numbers of components (400 and 906). There was also a small but significant difference between adults and children in the mean amount of masking produced by the broadband noise. The difference between the groups was much larger with smaller numbers of components. Data obtained from the adults were basically similar to that previously reported [cf. Neff and Green, Percept. Psychophys. 41, 409-415 (1987); Oh and Lutfi, J. Acoust. Soc. Am. 104, 3489-3499 (1998)]: maskers comprised of 10-40 components produced as much as 30 to 60 dB of masking in some, but not all listeners. Those same maskers produced larger amounts of masking (70-83 dB) in many of the preschool children, although, as in the adult group, individual differences were large. The component-relative-entropy (CoRE) model [Lutfi, J. Acoust. Soc. Am. 94, 748-758 (1993)] was used to describe the differences in performance between the children and adults. According to this model the average child appears to integrate information over a larger number of auditory filters than the average adult.  相似文献   

14.
This study examined the degree to which masker-spectral variability contributes to children's susceptibility to informational masking. Listeners were younger children (5-7 years), older children (8-10 years), and adults (19-34 years). Masked thresholds were measured using a 2IFC, adaptive procedure for a 300-ms, 1000-Hz signal presented simultaneously with (1) broadband noise, (2) a random-frequency ten-tone complex, or (3) a fixed-frequency ten-tone complex. Maskers were presented at an overall level of 60 dB SPL. Thresholds were similar across age for the noise condition. Thresholds for most children were higher than for most adults, however, for both ten-tone conditions. The average difference in threshold between random and fixed ten-tone conditions was comparable across age, suggesting a similar effect of reducing masker-spectral variability in children and adults. Children appear more likely to be susceptible to informational masking than adults, however, both with and in the absence of masker-spectral variability. The addition of a masker fringe (delayed onset of signal relative to masker) provided a release from masking for fixed and random ten-tone conditions in all age groups, suggesting at least part of the masking observed for both ten-tone maskers was informational.  相似文献   

15.
The amount of masking exerted by one speech sound on another can be reduced by presenting the masker twice, from two different locations in the horizontal plane, with one of the presentations delayed to simulate an acoustical reflection. Three experiments were conducted on various aspects of this phenomenon. Experiment 1 varied the number of masking talkers from one to three and the signal-to-noise (S/N) ratio from -12 to +4 dB. Evidence of masking release was found for every combination of these variables tested. For the most difficult conditions (multiple maskers and negative S/N) the amount of release was approximately 10 dB. Experiment 2 varied the timing of leading and lagging masker presentations over a broad range, to include shorter delay times where room reflections of speech are rarely noticed by listeners and longer delays where reflections can become disruptive. Substantial masking release was found for all of the shorter delay times tested, and negligible release was found at the longer delays. Finally, Experiment 3 used speech-spectrum noise as a masker and searched for possible energetic masking release as a function of the lead-lag time delay. Release of up to 4 dB was found whenever delays were 2 ms or less. No energetic masking release was found at longer delays.  相似文献   

16.
Experiment 1 examined comodulation masking release (CMR) for a 700-Hz tonal signal under conditions of N(o)S(o) (noise and signal interaurally in phase) and N(o)S(π) (noise in phase, signal out of phase) stimulation. The baseline stimulus for CMR was either a single 24-Hz wide narrowband noise centered on the signal frequency [on-signal band (OSB)] or the OSB plus, a set of flanking noise bands having random envelopes. Masking noise was either gated or continuous. The CMR, defined with respect to either the OSB or the random noise baseline, was smaller for N(o)S(π) than N(o)S(o) stimulation, particularly when the masker was continuous. Experiment 2 examined whether the same pattern of results would be obtained for a 2000-Hz signal frequency; the number of flanking bands was also manipulated (two versus eight). Results again showed smaller CMR for N(o)S(π) than N(o)S(o) stimulation for both continuous and gated masking noise. The CMR was larger with eight than with two flanking bands, and this difference was greater for N(o)S(o) than N(o)S(π). The results of this study are compatible with serial mechanisms of binaural and monaural masking release, but they indicate that the combined masking release (binaural masking-level difference and CMR) falls short of being additive.  相似文献   

17.
This study investigated comodulation detection differences (CDD) for fixed- and roved-frequency maskers. The objective was to determine whether CDD could be accounted for better in terms of energetic masking or in terms of perceptual fusion/segregation related to comodulation. Roved-frequency maskers were used in order to minimize the role of energetic masking, allowing possible effects related to perceptual fusion/segregation to be revealed. The signals and maskers were composed of 30-Hz-wide noise bands. The signal was either comodulated with the masker (A/A condition) or had a temporal envelope that was independent (A/B condition). The masker was either gated synchronously with the signal or had a leading temporal fringe of 200 ms. In the fixed-frequency masker conditions, listeners with low A/A thresholds showed little masking release due to masker temporal fringe and had CDDs that could be accounted for by energetic masking. Listeners with higher A/A thresholds in the fixed-frequency masker conditions showed relatively large CDDs and large masking release due to a masker temporal fringe. The CDDs of these listeners may have arisen, at least in part, from processes related to perceptual segregation. Some listeners in the roved masker conditions also had large CDDs that appeared to be related to perceptual segregation.  相似文献   

18.
The masking effects of white and amplitude comodulated noise were studied with respect to simple signal detection and sound source determination in goldfish. A stimulus generalization method was used to determine the signal-to-noise ratio required to completely determine the signal's characteristics. It was found that the S∕N required for this determination is about 4 dB greater than that required for signal detection, or was about 4 dB greater than the critical masking ratio. This means that the potential harm to fish of a given masking noise is at least 4 dB greater than previously thought, based on critical masking ratios. However, for amplitude comodulated noise between 10 and 50 Hz modulation rate, the potential harmful effects are up to 5.3 dB less than would be predicted from the critical masking ratio for unmodulated noise.  相似文献   

19.
The speech-reception threshold (SRT) for sentences presented in a fluctuating interfering background sound of 80 dBA SPL is measured for 20 normal-hearing listeners and 20 listeners with sensorineural hearing impairment. The interfering sounds range from steady-state noise, via modulated noise, to a single competing voice. Two voices are used, one male and one female, and the spectrum of the masker is shaped according to these voices. For both voices, the SRT is measured as well in noise spectrally shaped according to the target voice as shaped according to the other voice. The results show that, for normal-hearing listeners, the SRT for sentences in modulated noise is 4-6 dB lower than for steady-state noise; for sentences masked by a competing voice, this difference is 6-8 dB. For listeners with moderate sensorineural hearing loss, elevated thresholds are obtained without an appreciable effect of masker fluctuations. The implications of these results for estimating a hearing handicap in everyday conditions are discussed. By using the articulation index (AI), it is shown that hearing-impaired individuals perform poorer than suggested by the loss of audibility for some parts of the speech signal. Finally, three mechanisms are discussed that contribute to the absence of unmasking by masker fluctuations in hearing-impaired listeners. The low sensation level at which the impaired listeners receive the masker seems a major determinant. The second and third factors are: reduced temporal resolution and a reduction in comodulation masking release, respectively.  相似文献   

20.
Listeners with sensorineural hearing loss are poorer than listeners with normal hearing at understanding one talker in the presence of another. This deficit is more pronounced when competing talkers are spatially separated, implying a reduced "spatial benefit" in hearing-impaired listeners. This study tested the hypothesis that this deficit is due to increased masking specifically during the simultaneous portions of competing speech signals. Monosyllabic words were compressed to a uniform duration and concatenated to create target and masker sentences with three levels of temporal overlap: 0% (non-overlapping in time), 50% (partially overlapping), or 100% (completely overlapping). Listeners with hearing loss performed particularly poorly in the 100% overlap condition, consistent with the idea that simultaneous speech sounds are most problematic for these listeners. However, spatial release from masking was reduced in all overlap conditions, suggesting that increased masking during periods of temporal overlap is only one factor limiting spatial unmasking in hearing-impaired listeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号