首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
孙献平  韩叶清  罗晴  周欣 《物理》2011,40(06):381-390
文章简要介绍了磁共振波谱和成像的基本原理和对限制其灵敏度的挑战,详细阐述了为增强磁共振信号而制备超极化129Xe的物理机制,论述了129Xe在生物组织中的溶解性以及化学位移的特异性,综述了当前超极化129Xe在肺部、脑部成像领域的研究进展和在临床方面应用所取得的有代表性的研究成果,并讨论了基于超极化129Xe分子生物探针的超灵敏磁共振技术的研究前景,最后对超极化129Xe在生物医学领域的应用与发展作了展望.  相似文献   

2.
Hyperpolarized noble gases (HNGs) provide exciting possibilities for MR imaging at ultra-low magnetic field strengths (<0.15 T) due to the extremely high polarizations available from optical pumping. The fringe field of many superconductive magnets used in clinical MR imaging can provide a stable magnetic field for this purpose. In addition to offering the benefit of HNG MR imaging alongside conventional high field proton MRI, this approach offers the other useful advantage of providing different field strengths at different distances from the magnet. However, the extremely strong field gradients associated with the fringe field present a major challenge for imaging since impractically high active shim currents would be required to achieve the necessary homogeneity. In this work, a simple passive shimming method based on the placement of a small number of ferromagnetic pieces is proposed to reduce the fringe field inhomogeneities to a level that can be corrected using standard active shims. The method explicitly takes into account the strong variations of the field over the volume of the ferromagnetic pieces used to shim. The method is used to obtain spectra in the fringe field of a high-field (1.89 T) superconducting magnet from hyperpolarized 129Xe gas samples at two different ultra-low field strengths (8.5 and 17 mT). The linewidths of spectra measured from imaging phantoms (30 Hz) indicate a homogeneity sufficient for MRI of the rat lung.  相似文献   

3.
超极化~(129)Xe磁共振波谱和成像及在生物医学中的应用   总被引:1,自引:0,他引:1  
文章简要介绍了磁共振波谱和成像的基本原理和对限制其灵敏度的挑战,详细阐述了为增强磁共振信号而制备超极化129Xe的物理机制,论述了129Xe在生物组织中的溶解性以及化学位移的特异性,综述了当前超极化129Xe在肺部、脑部成像领域的研究进展和在临床方面应用所取得的有代表性的研究成果,并讨论了基于超极化129Xe分子生物探针的超灵敏磁共振技术的研究前景,最后对超极化129Xe在生物医学领域的应用与发展作了展望.  相似文献   

4.
A technique for continuous production of solutions containing hyperpolarized 129Xe is explored for MRI applications. The method is based on hollow fiber membranes which inhibit the formation of foams and bubbles. A systematic analysis of various carrier agents for hyperpolarized 129Xe has been carried out, which are applicable as contrast agents for in vivo MRI. The image quality of different hyperpolarized Xe solutions is compared and MRI results obtained in a clinical as well as in a nonclinical MRI setting are provided. Moreover, we demonstrate the application of 129Xe contrast agents produced with our dissolution method for lung MRI by imaging hyperpolarized 129Xe that has been both dissolved in and outgassed from a carrier liquid in a lung phantom, illustrating its potential for the measurement of lung perfusion and ventilation.  相似文献   

5.
In hyperpolarized (HP) noble-gas magnetic resonance imaging, large nuclear spin polarizations, about 100,000 times that ordinarily obtainable at thermal equilibrium, are created in 3He and 129Xe. The enhanced signal that results can be employed in high-resolution MRI studies of void spaces such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B(0)), making very low-field (VLF) MRI possible; indeed, it is possible to contemplate portable MRI using light-weight solenoids or permanent magnets. This article reports the first in vivo VLF MR images of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss).  相似文献   

6.
7.
The signal-to-noise ratio of nuclear magnetic resonance signals from laser-polarized 129Xe gas was investigated at 8.5 mT and compared to that of signals acquired at 1.88 T. A dedicated 8.5 mT resistive magnet was constructed and used to acquire the signals. The SNR for 1 atm of xenon gas with a polarization of 1% was measured to be 1900 at a field of 1.88 T. Under identical acquisition conditions, the SNR at 8.5 mT was about 60 (or 32 times lower). After measuring and including all of the electrical factors of the detection systems at each field strength, theory indicates the SNR value measured at 8.5m T should be about 36 times lower. Considering the widely differing frequencies and completely different detection systems the agreement is quite good and indicates that extrapolating the frequency dependence of the SNR down to very low fields does work as long as the detection system parameters are carefully accounted for. This work suggests that magnetic resonance (MR) imaging is achievable on ideal gas samples at 8.5 mT using laser-polarized 129Xe gas down to the practical resolution limit of about 0.5mm, although the SNR will be very low (approximately 1.4). The feasibility of imaging small animals at 8.5 mT is discussed and it is suggested that a field of about 50 mT is required.  相似文献   

8.
超极化气体3He 或者129Xe 扩散加权成像已经被证明了能够有效检测慢性阻塞性肺部疾病(COPD)中肺部微结构的改变.相比于3He,129Xe 更便宜而且更容易获得,但是129Xe 成像中较低的信噪比致使129Xe 的肺部表面扩散系数(ADC)的测量面临着许多困难.在该研究中,为了得到更高的图像信噪比,作者对气球模型,健康大鼠和COPD大鼠进行了单个b 值(14 cm2/s)的扩散加权超极化129Xe 磁共振成像(MRI).所有的COPD模型大鼠是通过烟熏和注射内毒素(LPS)进行诱导得到的.在7 T 磁共振成像仪上面获得了大鼠肺实质的超极化129Xe ADC 值分布图.COPD 大鼠肺实质的129Xe ADC 值是0.044 22±0.002 9 和0.042 34±0.002 3 cm2/s (Δ = 0.8/1.2 ms),远大于健康大鼠肺实质的129Xe ADC 值0.037 7±0.002 3 和0.036 7±0.001 3 cm2/s.而且COPD 大鼠肺实质相关的129Xe ADC 直方图也表现出了一定的展宽.这些结果说明了COPD 大鼠肺泡空腔的增大能够通过129Xe 在肺里面的ADC 增长和相关直方图的拓宽反应出来,从而证明了单个b 值的扩散加权MRI 方法可以有效地对COPD 大鼠进行检测.  相似文献   

9.
We describe an MR-compatible ventilator that is computer controlled to generate a variety of breathing patterns, to minimize image degrading effects of breathing motion, and to support delivery of gas anesthesia and experimental inhalational gases. A key feature of this ventilator is the breathing valve that attaches directly to the endotracheal tube to reduce dead volume and allows independent control of inspiratory and expiratory phases of ventilation. This ventilator has been used in a wide variety of MR and x-ray microscopy studies of small animals, especially for MR imaging the lungs with hyperpolarized gases ((3)He & (129)Xe).  相似文献   

10.
We study the feasibility and safety of human lung hyperpolarized(HP)~(129)Xe magnetic resonance imaging(MRI).There is no significant change in physiological parameters before and after the examinations of all subjects.Compared with computed tomography, HP~(129)Xe MRI is sensitive to earlier and smaller ventilation defects. The distribution of the HP~(129)Xe MRI signal reflects the pulmonary compliance with the gravity gradient. This is the first application of HP~(129)Xe MRI ventilation imaging in China, and this technology is expected to provide more useful information for clinical practice.  相似文献   

11.
We studied the free precession of the nuclear magnetization of hyperpolarized 129Xe gas in external magnetic fields as low as B0 = 4.5 nT, using SQUIDs as magnetic flux detectors. The transverse relaxation was mainly caused by the restricted diffusion of 129Xe in the presence of ambient magnetic field gradients. Its pressure dependence was measured in the range from 30 mbar to 850 mbar and compared quantitatively to theory. Motional narrowing was observed at low pressure, yielding transverse relaxation times of up to 8000 s.  相似文献   

12.
A rotating phantom for the study of flow effects in MR imaging   总被引:2,自引:0,他引:2  
A common type of phantom used for the study of flow effects in MR imaging is the tube phantom, where a liquid passes through a set of tubes placed in the main magnetic field of an MR scanner. Among the disadvantages with this type of phantom are that a distribution of velocities is present in each tube, and that quantifications of flow effects using tube phantoms may be very time-consuming. In this work, we describe the design and the properties of a rotating wheel flow phantom used for quantification of the effects of flow through the imaging plane as well as in the imaging plane. The proposed phantom is constructed as a rotating gel-filled wheel, surrounded by static volumes filled with the same gel, and the evaluation of the information from rotating and static parts is made with a specially designed computer program. The phantom can be used as a plug flow phantom covering simultaneously an interchangeable velocity interval, which at present has the range −52 mm/s, +52 mm/s. It is shown that the phantom gives adequate information on the dependence of pixel content on first-order motion in MR modulus and phase images. Among the fields of application are rapid calibration of MR imaging units for flow determination using phase information, as well as testing of pulse sequence characteristics and verification of theoretical predictions concerning the flow dependence in MR images.  相似文献   

13.
In previous experiments by the authors, in which hyperpolarized (129)Xe was dissolved in fresh blood samples, the T(1) was found to be strongly dependent on the oxygenation level, the values increasing with oxygenation: T(1) was about 4 s in deoxygenated samples and about 13 s in oxygenated samples. C. H. Tseng et al. (1997, J. Magn. Reson. 126, 79-86), on the other hand, recently reported extremely long T(1) values using hyperpolarized (129)Xe to create a "blood foam" and found that oxygenation decreased T(1). In their experiments, the continual and rapid exchange of hyperpolarized (129)Xe between the gas phase (within blood-foam bubbles) and the dissolved phase (in the skin of the bubbles) necessitated a complicated analysis to extract the effective blood T(1). In the present study, the complications of hyperpolarized (129)Xe exchange dynamics have been avoided by using thermally polarized (129)Xe dissolved in whole blood and in suspensions of lysed red blood cells (RBC). During T(1) measurements in whole blood, the samples were gently and continuously agitated, for the entire course of the experiment, to avert sedimentation. Oxygenation was found to markedly increase the T(1) of (129)Xe in blood, as originally measured, and it shifts the RBC resonance to a higher frequency. Carbon monoxide has a similar but somewhat stronger effect.  相似文献   

14.
In order to establish a continuous hyperpolarized xenon-129 (HP-129Xe) gas delivery system for MR imaging, the effect of the metallic materials in the gas pipeline on the signal intensity was investigated. In the gas pipeline, an appropriate surface is needed to minimize wall relaxation by the HP-129Xe gas caused by the interaction between the HP gas and the surface, which can lead to signal loss. Although Pyrex glass is a popular material for the HP gas chamber, it is fragile under heat or physical stress. In this study, five stainless steel tubes (STs) prepared with different surface film-forming processes were examined. The MR signal intensities of HP-129Xe gas that passed through each tube were then compared. The film passivated by iron fluoride maintained the highest level of hyperpolarization, whereas that passivated by chromium oxide maintained the lowest. A ST with an appropriate passive film may be a useful alternative to a Pyrex glass pipeline.  相似文献   

15.
Nuclear-magnetic-resonance (NMR) measurement of laser-polarized gaseous129Xe produced by spin-exchange optical pumping with a narrow-linewidth laser at a high magnetic field of 4.7 T is reported. The samples are contained in the glass tubes. The nuclear spin polarization of the laserpolarized129Xe is 3.9%, and this corresponds to an enhancement of 9· 103 compared to the equilibrium value at 311 K and at the same magnetic field. The laser-enhanced129Xe NMR signals can be used in MR imaging.  相似文献   

16.
With the use of hyperpolarized gases, a great number of experiments have been carried out in order to improve the diagnostics of the lung, both from a structural and a functional point of view. 3He is best suited for structural studies, whereas 129Xe gives more detailed information about the functionality of the lung because it enters the bloodstream. In this work, we propose the use of a gas mixture to perform consecutive analysis of lung structure and functionality upon the delivery of a single bolus of gas. We show images of a helium-xenon gas mixture in the presence of a small amount of liquid toluene in order to demonstrate how both nuclei can be detected independently, extracting the spectroscopic information provided by the 129Xe spectra and obtaining an image with high sensitivity for 3He. A second experiment performed on a dissected mouse lung was used to demonstrate how the mixture of gases can enhance sensitivity in the larger airways of the lung.  相似文献   

17.
Detection of tobacco smoke deposition by hyperpolarized krypton-83 MRI   总被引:1,自引:0,他引:1  
Despite the importance of the tobacco smoke particulate matter in the lungs to the etiology of pulmonary disease in cigarette smokers, little is currently known about the spatial distribution of particle deposition or the persistence of the resulting deposits in humans, and no satisfactory technique currently exists to directly observe tobacco smoke condensate in airways. In this proof-of-principle work, hyperpolarized (hp) 83Kr MRI and NMR spectroscopy are introduced as probes for tobacco smoke deposition in porous media. A reduction in the hp-83Kr longitudinal (T1) relaxation of up to 95% under near-ambient humidity, pressure and temperature conditions was observed when the krypton gas was brought into contact with surfaces that had been exposed to cigarette smoke. This smoke-induced acceleration of the 83Kr self-relaxation was observed for model glass surfaces that, in some experiments, were coated with bovine lung surfactant extract. However, a similar effect was not observed with hp-(129)Xe indicating that the 83Kr sensitivity to smoke deposition was not caused by paramagnetic species but rather by quadrupolar relaxation due to high adsorption affinity for the smoke deposits. The 83Kr T1 differences between smoke-treated and untreated surfaces were sufficient to produce a strong contrast in variable flip angle FLASH hp-83Kr MRI, suggesting that hp-83Kr may be a promising contrast agent for in vivo pulmonary MRI.  相似文献   

18.
Using spin-echo NMR techniques we study the transverse spin relaxation of hyperpolarized liquid 129Xe in a spherical cell. We observe an instability of the transverse magnetization due to dipolar fields produced by liquid 129Xe, and find that imperfections in the pi pulses of the spin-echo sequence suppress this instability. A simple perturbative model of this effect is in good agreement with the data. We obtain a transverse spin relaxation time of 1300 sec in liquid 129Xe, and discuss applications of hyperpolarized liquid 129Xe as a sensitive magnetic gradiometer and for a permanent electric dipole moment search.  相似文献   

19.
The relaxation time of liquid (129)Xe is very long (>15 min) and the signal at thermal equilibrium is weak. Therefore, determination of the absolute polarization enhancement of hyperpolarized (129)Xe by direct measurement is tedious. We demonstrate a fast and precise alternative, based on the dipolar field created by liquid hyperpolarized (129)Xe contained in a cylindrical sample tube. The dipolar field is homogeneous in the bulk of the tube and adds to the external field, causing a shift in the Larmor frequencies of all nuclear spins. We show that the frequency shift of the proton in CHCl(3) (chloroform), which dissolves homogeneously in xenon over a fairly broad temperature range, is an excellent probe for (129)Xe polarization. Frequency measurements are precise and the experiment is much faster than by direct measurement. Furthermore the (129)Xe polarization is minimally disturbed since no rf pulses are applied directly to (129)Xe and since chloroform is a fairly weak source of (129)Xe relaxation. The experiments are reproducible and require only standard NMR instrumentation.  相似文献   

20.
In a gas-filled material like the lung parenchyma, the transverse relaxation time (T2) for 3He is shortened by the deposition of magnetic microspheres and rapid molecular diffusion through induced field distortions. Here, this unique relaxation process is described theoretically and predicted T2-shortening is validated using pressurized 3He gas in a foam model of alveolar airways. Results demonstrate that: (1) significant T2-shortening is induced by microsphere deposition, (2) shortened 3He T2s are accurately predicted, and (3) measured relaxation times are exploitable for quantifying local deposition patterns. Based on these findings the feasibility of imaging inhaled particulates in vivo with hyperpolarized 3He is examined and performance projections are formulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号