首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interferences from biological matrices remain a major challenge to the in vivo detection of drug metabolites. For the last few decades, predicted metabolite masses and fragmentation patterns have been employed to aid in the detection of drug metabolites in liquid chromatography/mass spectrometry (LC/MS) data. Here we report the application of an accurate mass-based background-subtraction approach for comprehensive detection of metabolites formed in vivo using troglitazone as an example. A novel algorithm was applied to check all ions in the spectra of control scans within a specified time window around an analyte scan for potential background subtraction from that analyte spectrum. In this way, chromatographic fluctuations between control and analyte samples were dealt with, and background and matrix-related signals could be effectively subtracted from the data of the analyte sample. Using this algorithm with a +/- 1.0 min control scan time window, a +/- 10 ppm mass error tolerance, and respective predose samples as controls, troglitazone metabolites were reliably identified in rat plasma and bile samples. Identified metabolites included those reported in the literature as well as some that had not previously been reported, including a novel sulfate conjugate in bile. In combination with mass defect filtering, this algorithm also allowed for identification of troglitazone metabolites in rat urine samples. With a generic data acquisition method and a simple algorithm that requires no presumptions of metabolite masses or fragmentation patterns, this high-resolution LC/MS-based background-subtraction approach provides an efficient alternative for comprehensive metabolite identification in complex biological matrices. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A retention‐time‐shift‐tolerant background subtraction and noise reduction algorithm (BgS‐NoRA) is implemented using the statistical programming language R to remove non‐drug‐related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background‐subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181–1190). The noise reduction algorithm (NoRA) is an add‐on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS‐NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre‐metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug‐related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with 14C‐loratadine with minimal interference. Results from these experiments demonstrate that BgS‐NoRA is more effective in removing analyte‐unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS‐NoRA are in excellent qualitative correlation to the radiochromatograms. BgS‐NoRA will be a very useful tool in metabolite detection and identification work, especially in first‐in‐human (FIH) studies and multiple dose toxicology studies where non‐radio‐labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A need still exists for a liquid chromatography/tandem mass spectrometry (LC/MS/MS) method that can detect broad classes of glutathione (GSH) conjugates and provide characterization of their structures. We now describe the development of a method that multiplexes high-resolution accurate mass analysis with isotope pattern triggered data-dependent product ion scans, for simultaneous detection and structural elucidation of GSH conjugates within a single analysis using a LTQ/Orbitrap. This method was initially developed to detect GSH conjugates generated from incubating 10 microM test compound with pooled human liver microsomes fortified with NADPH-regenerating system and a 2:1 ratio of 5 mM glutathione and [(13)C(2) (15)N-Gly]glutathione. The GSH conjugates were detected by isotope search of mass defect filtered and control subtracted full scan accurate MS data using MetWorks software. This was followed by elucidation of reactive intermediate structures using chemical formulae for both protonated molecules and their product ions from accurate masses in a single analysis. The mass accuracies measured for the precursor and product ions by the Orbitrap were <2 ppm in external mass calibration mode. Successful detection and characterization of GSH conjugates of acetaminophen, tienilic acid, clozapine, ticlopidine and mifepristone validated this method. In each case, the detected GSH conjugates were within the top five hits by isotope search. This method also has a broader detection capability since it is independent of the collision-induced dissociation behavior of the GSH conjugates. Furthermore, this method is amenable to a broad class of reactive intermediate trapping agents as exemplified by the simultaneous detection and structural elucidation of the cyano-N-methylene iminium ion conjugates of verapamil and its O-desmethyl metabolites, which we report for the first time. In addition to the chemically tagged reactive intermediates, this method also provides information on stable metabolites from the full scan accurate MS data.  相似文献   

4.
A new strategy using a hybrid linear ion trap/Orbitrap mass spectrometer and multiple post-acquisition data mining techniques was evaluated and applied to the detection and characterization of in vitro metabolites of indinavir. Accurate-mass, full-scan MS and MS/MS data sets were acquired with a generic data-dependent method and processed with extracted-ion chromatography (EIC), mass-defect filter (MDF), product-ion filter (PIF), and neutral-loss filter (NLF) techniques. The high-resolution EIC process was shown to be highly effective in the detection of common metabolites with predicted molecular weights. The MDF process, which searched for metabolites based on the similarity of mass defects of metabolites to those of indinavir and its core substructures, was able to find uncommon metabolites not detected by the EIC processing. The high-resolution PIF and NLF processes selectively detected metabolites that underwent fragmentation pathways similar to those of indinavir or its known metabolites. As a result, a total of 15 metabolites including two new indinavir metabolites were detected and characterized in a rat liver S9 incubation sample. Overall, these data mining techniques, which employed distinct metabolite search mechanisms, were complementary and effective in detecting both common and uncommon metabolites. In summary, the results demonstrated that this analytical strategy enables the high-throughput acquisition of accurate-mass LC/MS data sets, comprehensive search of a variety of metabolites through the post-acquisition processes, and effective structural characterization based on elemental compositions of metabolite molecules and their product ions.  相似文献   

5.
Structural characterization of unstable metabolites and other drug-derived entities poses a serious challenge to the analytical chemist using instrumentation such as LC-MS and LC-MS/MS, and may lead to inaccurate identification of metabolite structures. The task of structural elucidation becomes even more difficult when an analyte is unstable in the ion source of the mass spectrometer. However, a judicious selection of the experimental conditions and the advanced features of new generation mass spectrometers can often overcome these difficulties. We describe here the identification of three drug-derived peaks (A, B and C) that were detected from a Schering-Plough developmental compound (Lonafarnib) following incubation with cDNA-expressed human CYP3A4. Definitive characterization was achieved using (1) accurate mass measurement, (2) stable isotope incorporation, (3) reduced ion source temperature, (4) alkali ion attachment and (5) MS/MS fragmentation studies. The protonated ions of compounds A and B fragmented almost completely in the source, yielding ions of the same mass-to-charge ratio (m/z) as that of protonated C (CH+). Fortunately, the presence of Na+ and K+ adducts of A and B provided information crucial to distinguishing AH+ and BH+ from their fragment ions. Metabolite A was shown to be an unstable hydroxylated metabolite of Lonafarnib. The metabolite C was shown to be a dehydrogenated metabolite of Lonafarnib (Lonafarnib-2H), unstable in the presence of protic solvents. Finally, B was artifactually formed most likely from C by the solvolytic addition of methanol during sample preparation. MS/MS fragmentation experiments assisted in identifying the site of metabolism in A and chemical modification in B. A and C readily interconvert through hydration/dehydration, and B and C through addition/elimination of methanol present in the sample-processing solvents. Finally, NMR experiments were performed to confirm the structures of A and C.  相似文献   

6.
A novel LC/MS/MS method that uses multiple ion monitoring (MIM) as a survey scan to trigger the acquisition of enhanced product ions (EPI) on a hybrid quadrupole-linear ion trap mass spectrometer (Q TRAP) was developed for drug metabolite identification. In the MIM experiment, multiple predicted metabolite ions were monitored in both Q1 and Q3. The collision energy in Q2 was set to a low value to minimize fragmentation. Results from analyzing ritonavir metabolites in rat hepatocytes demonstrate that MIM-EPI was capable of targeting a larger number of metabolites regardless of their fragmentation and retained sensitivity and duty cycle similar to multiple reaction monitoring (MRM)-EPI. MIM-based scanning methods were shown to be particularly useful in several applications. First, MIM-EPI enabled the sensitive detection and MS/MS acquisition of up to 100 predicted metabolites. Second, MIM-MRM-EPI was better than MRM-EPI in the analysis of metabolites that undergo either predictable or unpredictable fragmentation pathways. Finally, a combination of MIM-EPI and full-scan MS (EMS), as an alternative to EMS-EPI, was well suited for routine in vitro metabolite profiling. Overall, MIM-EPI significantly enhanced the metabolite identification capability of the hybrid triple quadrupole-linear ion trap LC/MS.  相似文献   

7.
This paper describes a new strategy that utilizes the fast trap mode scan of the hybrid triple quadrupole linear ion trap (QqQ(LIT)) for the identification of drug metabolites. The strategy uses information-dependent acquisition (IDA) where the enhanced mass scan (EMS), the trap mode full scan, was used as the survey scan to trigger multiple dependent enhanced product ion scans (EPI), the trap mode product ion scans. The single data file collected with this approach not only includes full scan data (the survey), but also product ion spectra rich in structural information. By extracting characteristic product ions from the dependent EPI chromatograms, we can provide nearly complete information for in vitro metabolites that otherwise would have to be obtained by multiple precursor ion scan (prec) and constant neutral loss (NL) analysis. This approach effectively overcomes the disadvantages of traditional prec and NL scans, namely the slow quadrupole scan speed, and possible mass shift. Using nefazodone (NEF) as the model compound, we demonstrated the effectiveness of this strategy by identifying 22 phase I metabolites in a single liquid chromatography/tandem mass spectrometry (LC/MS/MS) run. In addition to the metabolites reported previously in the literature, seven new metabolites were identified and their chemical structures are proposed. The oxidative dechlorination biotransformation was also discovered which was not reported in previous literature for NEF. The strategy was further evaluated and worked well for the fast discovery setting when a ballistic gradient elution was used, as well as for a simulated in vivo setting when the incubated sample (phase I metabolites) was spiked to control human plasma extract and control human urine.  相似文献   

8.
The in vivo and in vitro metabolism of jatrorrhizine has been investigated using a specific and sensitive LC/MS/MS method. In vivo samples including rat feces, urine and plasma collected separately after dosing healthy rats with jatrorrhizine (34 mg/kg) orally, along with in vitro samples prepared by incubating jatrorrhizine with rat intestinal flora and liver microsome, respectively, were purified using a C(18) solid-phase extraction cartridge. The purified samples were then separated with a reversed-phase C(18) column with methanol-formic acid aqueous solution (70:30, v/v, pH3.5) as mobile phase and detected by on-line MS/MS. The structural elucidation of the metabolites was performed by comparing their molecular weights and product ions with those of the parent drug. As a result, seven new metabolites were found in rat urine, 13 metabolites were detected in rat feces, 11 metabolites were detected in rat plasma, 17 metabolites were identified in intestinal flora incubation solution and nine metabolites were detected in liver microsome incubation solution. The main biotransformation reactions of jatrorrhizine were the hydroxylation reaction, the methylation reaction, the demethylation reaction and the dehydrogenation reaction of parent drug and its relative metabolites. All the results were reported for the first time, except for some of the metabolites in rat urine.  相似文献   

9.
The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box–Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices.  相似文献   

10.
Electrophilic reactive metabolite screening by liquid chromatography/mass spectrometry (LC/MS) is commonly performed during drug discovery and early-stage drug development. Accurate mass spectrometry has excellent utility in this application, but sophisticated data processing strategies are essential to extract useful information. Herein, a unified approach to glutathione (GSH) trapped reactive metabolite screening with high-resolution LC/TOF MS(E) analysis and drug-conjugate-specific in silico data processing was applied to rapid analysis of test compounds without the need for stable- or radio-isotope-labeled trapping agents. Accurate mass defect filtering (MDF) with a C-heteroatom dealkylation algorithm dynamic with mass range was compared to linear MDF and shown to minimize false positive results. MS(E) data-filtering, time-alignment and data mining post-acquisition enabled detection of 53 GSH conjugates overall formed from 5 drugs. Automated comparison of sample and control data in conjunction with the mass defect filter enabled detection of several conjugates that were not evident with mass defect filtering alone. High- and low-energy MS(E) data were time-aligned to generate in silico product ion spectra which were successfully applied to structural elucidation of detected GSH conjugates. Pseudo neutral loss and precursor ion chromatograms derived post-acquisition demonstrated 50.9% potential coverage, at best, of the detected conjugates by any individual precursor or neutral loss scan type. In contrast with commonly applied neutral loss and precursor-based techniques, the unified method has the advantage of applicability across different classes of GSH conjugates. The unified method was also successfully applied to cyanide trapping analysis and has potential for application to alternate trapping agents.  相似文献   

11.
The purpose of the study was to determine the advantages of different mass spectrometric instruments and commercially available metabolite identification programs for metabolite profiling. Metabolism of tramadol hydrochloride and the excretion of it and its metabolites into human urine were used as a test case because the metabolism of tramadol is extensive and well known. Accurate mass measurements were carried out with a quadrupole time-of-flight mass spectrometer (Q-TOF) equipped with a LockSpray dual-electrospray ionization source. A triple quadrupole mass spectrometer (QqQ) was applied for full scan, product ion scan, precursor ion scan and neutral loss scan measurements and an ion trap instrument for full scan and product ion measurements. The performance of two metabolite identification programs was tested. The results showed that metabolite programs are time-saving tools but not yet capable of fully automated metabolite profiling. Detection of non-expected metabolites, especially at low concentrations in a complex matrix, is still almost impossible. With low-resolution instruments urine samples proved to be challenging even in a search for expected metabolites. Many false-positive hits were obtained with the automated searching and manual evaluation of the resulting data was required. False positives were avoided by using the higher mass accuracy Q-TOF. Automated programs were useful for constructing product ion methods, but the time-consuming interpretation of mass spectra was done manually. High-quality MS/MS spectra acquired on the QqQ instrument were used for confirmation of the tramadol metabolites. Although the ion trap instrument is of undisputable benefit in MS(n), the low mass cutoff of the ion trap made the identification of tramadol metabolites difficult. Some previously unreported metabolites of tramadol were found in the tramadol urine sample, and their identification was based solely on LC/MS and LC/MS/MS measurements.  相似文献   

12.
We have identified in vitro metabolites of bupropion (Wellbutrin®) from incubations with human liver S9 fraction and human liver microsomes based on molecular weight information from full scan experiments using a liquid chromatograph coupled to a quadrupole ion trap mass spectrometer capable of multi-stage operation (LC/MSn). Preliminary experiments have shown that this instrument provides comparable sensitivity to conventional LC-coupled triple quadrupole instruments for metabolic studies, while allowing detailed structural studies using MSn experiments and routine on-line coupling with high performance liquid chromatography via an external atmospheric pressure chemical ionization (APCI) source. The LC/MS analysis of human S9 showed the presence of three isomeric monohydroxylated metabolites of bupropion. These were further characterized in a series of MS/MS experiments which gave characteristic spectra for the three isomers. A minor dihydroxylated species was also identified in the human S9 sample and further characterized in a series of MSn experiments. Detailed structural information was generated by the use of on-line LC/MSn type experiments. We have followed the fragmentation pathways of several molecular ion species in a series of sequential LC/MSn experiments, extending as far as MS6 with scan cycle times of less than 1.5 s. Such experiments have provided insights into the structure of specific fragment ions. Additional metabolic products were identified in the rat liver microsomes incubation sample.  相似文献   

13.
罗红霉素及其代谢物的电喷雾离子阱质谱研究   总被引:5,自引:1,他引:4  
采用电喷雾离子阱质谱法对人尿样中的罗红霉素及其10种代谢物进行了结构鉴定,利用质谱解析软件对其质谱裂解途径进行分析,发现它们的(+)ESI-MS2和(+)ESI-MS3质谱分别生成脱红霉糖和脱氨基糖碎片,并可见脱去C9位含氮烷基侧链和一系列质荷比相差18的脱水碎片离子,这些特征可用于罗红霉素及其结构类似物的体内代谢转化研究.  相似文献   

14.
Liquid chromatography coupled to orthogonal acceleration time-of-flight mass spectrometry (LC/TOF) provides an attractive alternative to liquid chromatography coupled to triple quadrupole mass spectrometry (LC/MS/MS) in the field of multiresidue analysis. The sensitivity and selectivity of LC/TOF approach those of LC/MS/MS. TOF provides accurate mass information and a significantly higher mass resolution than quadrupole analyzers. The available mass resolution of commercial TOF instruments ranging from 10 000 to 18 000 full width at half maximum (FWHM) is not, however, sufficient to completely exclude the problem of isobaric interferences (co-elution of analyte ions with matrix compounds of very similar mass). Due to the required data storage capacity, TOF raw data is commonly centroided before being electronically stored. However, centroiding can lead to a loss of data quality. The co-elution of a low intensity analyte peak with an isobaric, high intensity matrix compound can cause problems. Some centroiding algorithms might not be capable of deconvoluting such partially merged signals, leading to incorrect centroids.Co-elution of isobaric compounds has been deliberately simulated by injecting diluted binary mixtures of isobaric model substances at various relative intensities. Depending on the mass differences between the two isobaric compounds and the resolution provided by the TOF instrument, significant deviations in exact mass measurements and signal intensities were observed. The extraction of a reconstructed ion chromatogram based on very narrow mass windows can even result in the complete loss of the analyte signal. Guidelines have been proposed to avoid such problems. The use of sub-2 microm HPLC packing materials is recommended to improve chromatographic resolution and to reduce the risk of co-elution. The width of the extraction mass windows for reconstructed ion chromatograms should be defined according to the resolution of the TOF instrument. Alternative approaches include the spiking of the sample with appropriate analyte concentrations. Furthermore, enhanced software, capable of deconvoluting partially merged mass peaks, may become available.  相似文献   

15.
新型抗炎镇痛剂SFZ-47及其代谢物的电喷雾离子阱质谱研究   总被引:7,自引:0,他引:7  
用电喷雾离子阱质谱对警犬尿样中SFZ-47[3H-1,2-二氢-2-(4-甲基苯胺基)甲基-1-吡咯里嗪酮)及其4种代谢物进行了结构鉴定,利用质谱解析软件分析其裂解方式发现,它们在(+)ESI-MS^2或( )ESI-MS^3质谱中分别生成m/z122和脱吡咯里嗪酮母核的碎片,并发现葡萄苷酸型代谢物易于生成脱水(18u)和脱葡萄醛酸(176u)的碎片离子,这些特征可用于SFZ-47及结构类似物的体内生物转化研究。  相似文献   

16.
The analysis of mixtures of unknowns using techniques interfacing liquid chromatography (LC) with mass spectrometry (MS) often suffers from the high abundance of background ions. To allow a quick search for components in the mixtures, a special type of display has been developed that shows all the data obtained in an analysis run simultaneously. On the screen, the m/z information from the mass scan (in the x direction) and the time (as scan number, in the y direction) are displayed with mass peaks given as single points. The relative intensity of a signal is colour coded. Thus, it is easy to recognize analyte signals as bright islands in a dark surrounding; even weak signals in the vicinity of strong background ions are identified quite clearly. Additionally, the program incorporates some features to allow a simple operation and very fast investigation of the data. This article is an electronic publication in Spectrochimica Acta Electronica (SAE), the electronic section of Spectrochimica Acta Part B (SAB). The hardcopy text is accompanied by a disk containing the program MSGRAPH, a manual, data files and additional text files.  相似文献   

17.
The identification and structure elucidation of drug metabolites is one of the main objectives in in vitro ADME studies. Typical modern methodologies involve incubation of the drug with subcellular fractions to simulate metabolism followed by LC-MS/MS or LC-MS(n) analysis and chemometric approaches for the extraction of the metabolites. The objective of this work was the software-guided identification and structure elucidation of major and minor buspirone metabolites using capillary LC as a separation technique and ion trap MS(n) as well as electrospray ionization orthogonal acceleration time-of-flight (ESI oaTOF) mass spectrometry as detection techniques.Buspirone mainly underwent hydroxylation, dihydroxylation and N-oxidation in S9 fractions in the presence of phase I co-factors and the corresponding glucuronides were detected in the presence of phase II co-factors. The use of automated ion trap MS/MS data-dependent acquisition combined with a chemometric tool allowed the detection of five small chromatographic peaks of unexpected metabolites that co-eluted with the larger chromatographic peaks of expected metabolites. Using automatic assignment of ion trap MS/MS fragments as well as accurate mass measurements from an ESI oaTOF mass spectrometer, possible structures were postulated for these metabolites that were previously not reported in the literature.  相似文献   

18.
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Metabolite identification (Met ID) is important during the early stages of drug discovery and development, as the metabolic products may be pharmacologically active or toxic in nature. Liquid chromatography-mass spectrometry (LC-MS) has a towering role in metabolism research.This review discusses current approaches and recent advances in using LC-MS for Met ID. We critically assess and compare various mass spectrometers, highlighting their strengths and limitations. Citing appropriate examples, we cover recent LC and ion sources, isotopic-pattern matching, hydrogen/deuterium-exchange MS, data dependent analyses, MSE, mass defect filter, 2D and 3D approaches for the elucidation of molecular formula, polarity switching, and background-subtraction and noise-reduction algorithms. A flow chart outlines a comprehensive strategy for Met ID, including a focus on reactive metabolites.  相似文献   

20.
A rapid screening method for pesticides has been developed to promote more efficient processing of produce entering the United States. Foam swabs were used to recover a multiclass mixture of 132 pesticides from the surfaces of grapes, apples, and oranges. The swabs were analyzed using direct analysis in real time (DART) ionization coupled with a high‐resolution Exactive Orbitrap? mass spectrometer. By using a DART helium temperature gradient from 100–350°C over 3 min, a minimal separation of analytes based on volatility differences was achieved. This, combined with the Exactive's mass resolution of 100 000, allowed the chromatographic step, along with the typical compositing and extraction steps associated with gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry (LC/MS) approaches, to be eliminated. Detection of 86% of the analytes present was consistently achieved at levels of 2 ng/g (per each apple or orange) and 10 ng/g (per grape). A resolution study was conducted with four pairs of isobaric compounds analyzed at a mass resolution of 100 000. Baseline separation was achieved with analyte ions differing in mass by 25 ppm and analyte ions with a mass difference of 10 ppm were partially resolved. In addition, field samples that had undergone traditional sample preparation using QuEChERS (quick, easy, cheap, rugged, and safe) were analyzed using both LC/MS and DART‐MS and the results from the two techniques were found to be comparable in terms of identification of the pesticides present. The use of swabs greatly increased sample throughput by reducing sample preparation and analysis time. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号