首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of the restricted volume of poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules of different size (2.2, 4.2, and 8.1 microm) on the TiO2-assisted photosynthesis of urea from inorganic precursors (CO2 and NO(3-)) in aqueous solution was demonstrated. Poly(vinyl alcohol) was employed as electron donor to facilitate the photosynthetic process. Decreasing the size of the confined microvolume of polyelectrolyte capsules accelerates the NO(3-) photoreduction, which is a limiting stage of the urea photosynthesis and, correspondingly, increases the efficiency of urea production. The highest yield of urea photosynthesis (37%) was achieved for Cu-modified TiO2 nanoparticles encapsulated inside 2.2 microm poly(styrene sulfonate)/poly(allylamine hydrochloride) capsules.  相似文献   

2.
pH‐Controlled encapsulation in and release of macromolecules from polyelectrolyte capsules of a few microns in diameter is demonstrated. Capsules were prepared via alternating adsorption of the oppositely charged polymers poly(allylamine hydrochloride) and poly(styrene sulfonate) onto decomposable melamin formaldehyde cores. The capsules were open for macromolecules at pH values below 6 and closed at pH > 8.  相似文献   

3.
The permeability of ions and small polar molecules through polyelectrolyte multilayer capsules templated on red blood cells was studied by means of confocal microscopy and electrorotation. Capsules were obtained by removing the cell after polyelectrolyte multilayer formation by means of NaOCl treatment. This procedure results in cross-linking of poly(allylamine hydrochloride) (PAH) molecules and destroying poly(styrene sulfonate) (PSS) within the multilayer. Capsules are obtained being remarkably different from layer-by-layer (LbL) capsules. These capsules are rather permeable for low as well as for high molecular weight species. However, upon adsorption of extra polyelectrolyte layers the permeability decreased remarkably. The assembly of six supplementary layers of PAH and PSS rendered the capsule almost impermeable for fluorescein. Resealing by supplementary layers is a potential means for filling and release control. By means of electrorotation measurements, it was shown that the capsule walls obtained isolating properties in electrolyte solutions. Conclusions are drawn concerning the mechanism of permeability through cell templated polyelectrolyte multilayer capsules.  相似文献   

4.
The influence of common cationic surfactants on the physical properties of differently composed polyelectrolyte films prepared by the layer-by-layer (LbL) technology was investigated. Free-standing polyelectrolyte films as microcapsules showed a fast, strong response to the addition of less than 1 mM cationic surfactant cetyltrimethylammonium bromide (CeTAB). As a function of the polyelectrolyte composition, the behavior of the capsules varied from negligible changes to complete disintegration via strong swelling. The response of microcapsules consisting of (poly(allylamine hydrochloride)(PAH)/poly(styrene sulfonate)(PSS))(4) was associated with a 5-fold volume increase, a fast switch of permeability, and in the case of fluorescently labeled films a 4-fold increase in fluorescence intensity. The kinetics and strengths of the interaction process were investigated by confocal laser scanning microscopy (CLSM) and fluorescence spectroscopy. Also, the relative stabilities of the polycation/polyanion and surfactant/polyanion complexes were determined. A mechanism was suggested to explain the interactions between the cationic surfactants and polyelectrolyte capsules. The strong response can be exploited in potential applications such as the triggered release of drugs or other encapsulated materials, the fluorescence-based detection of cationic detergents, and a switchable stopper in microchannels. However, the high sensitivity of LbL films to traces of cationic surfactants can also limit their applicability to the encapsulation of drugs or other materials because pharmaceutical or technical formulations often contain cationic surfactants as preservatives such as benzalkonium salts (BAC). It was demonstrated that undesired capsule opening can be effectively prevented by cross-linking the polyelectrolyte multilayers.  相似文献   

5.
The layer by layer deposition process of polyelectrolytes is used to construct films equipped with several compartments containing "free polyelectrolytes". Each compartment corresponds to a stratum of an exponentially growing polyelectrolyte multilayer film, and two consecutive compartments are separated by a stratum composed of a linearly growing multilayer that acts as a barrier preventing polyelectrolyte diffusion from one compartment to another. We use hyaluronic acid/poly(L-lysine) as the system to build the compartments and the poly(styrene sulfonate)/poly(allylamine) system for the barrier. Using confocal microscopy, it is shown that poly(L-lysine) diffuses only within the compartment in which it was initially introduced during the film construction and is thus unable to cross the barriers. Using fluorescein isothiocyanate as a pH indicator, it is also shown that although poly(styrene sulfonate)/poly(allylamine) multilayers act as a barrier for polyelectrolytes, they do not prevent proton diffusion through the film. Such films open the route for multiple functionalization of biomaterial coatings.  相似文献   

6.
Polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) polyelectrolyte multilayer was found to be instable and apt to reconstruct in the pure water. By depositing polystyrene-poly(acrylic acid)/poly(allylamine hydrochloride) multilayer on the polystyrene-poly(acrylic acid) hybrid CaCO(3) templates, novel polyelectrolyte capsules could be prepared after the removal of the templates. The resultant capsules could keep their three-dimensional (3D) spherical shape after being dried at room temperature, dramatically different from the conventional polyelectrolyte capsules based on nonhybrid templates by layer-by-layer procedure. The instable polyelectrolyte multilayer, hybrid templates, and assembly cycles were demonstrated to be three indispensable factors responsible for the formation of this type of 3D stable capsules. The formation mechanism was also discussed in this study.  相似文献   

7.
Poly(styrene sulfonate) and poly(allylamine hydrochloride) layers have been adsorbed supplementarily on polyelectrolyte capsules. The permeability of the original capsules consisting of four layer pairs was of the order of 10–5 m/s for fluorescein. They were also permeable for macromolecules. Polyelectrolyte layers adsorbed afterwards reduced the permeability by three orders of magnitude for small molecules. These findings are interpreted as a resealing of pores, induced by the osmotic stress during fabrication.  相似文献   

8.
Hollow polyelectrolyte microcapsules made of poly(allylamine hydrochloride) and sodium poly(styrene sulfonate), templated on various cores, manganese and calcium carbonate particles or polystyrene latexes, were investigated. The polyelectrolyte multilayers respond to a change of pH, leading to a swelling of the capsules in basic conditions and a further shrinking when the pH is reduced to acidic. The nature of the core and the subsequent dissolution process have an influence on this pH responsiveness, and the structuring effect of tetrahydrofuran on the multilayers has been demonstrated. Increasing the molecular weight of the polymers or the number of layers causes also a rigidification of the structure and modifies the pH response.  相似文献   

9.
p-Sulfonatocalix[6]arene is shown to form insoluble complexes with poly(allylamine hydrochloride) when the charge balance between the negative calixarene sulfonate groups matches the positive charge carried by the polyelectrolyte, this makes this glycosylaminoglycan analog an interesting candidate for controlled release systems in the case of proteins encapsulated in mesoscopic complexes with polyelectrolytes.  相似文献   

10.
Polyelectrolyte capsules were fabricated by layer-by-layer deposition of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) on glutardialdehyde fixed human erythrocytes and subsequent core dissolution using NaOCl as an oxidizing agent. SANS together with confocal laser scanning microscopy (CLSM) were applied to study capsule topology and interior as well as the layer thickness as a function of the deposition protocol, layer number, ionic concentration, and temperature treatment. The capsules contained various amounts of trapped polyelectrolyte. Retention depended on the order of polyelectrolyte deposition and layer number, which influenced layer permeability. The capsule wall thickness was found to be much smaller (3-4.5 nm in total) than what was known for polyelectrolyte multilayer walls, where every single layer contributes about 1.8 nm to the total thickness. NaCl (0.1 mM) caused a layer thickness decrease by 16%. Annealing at 70 degrees C induced capsule shrinking together with an increase of the wall thickness by 85% and wall density by 12%.  相似文献   

11.
The interactions between two poly(allylamine)/poly(styrene sulfonate) multilayers made of 4.5 and 5 bilayers are investigated by the surface force apparatus (SFA). As the two surfaces approach, one reaches a threshold point where a repulsion sets in, until they become barely compressible. Repetitive load/unload cycles show that, once compressed, the films remain almost in their compressed state. This indicates that the poly(allylamine)/poly(styrene sulfonate) films are in a glassy state, in marked difference with the SFA findings on poly-(L-lysine)/poly-L-glutamic acid) multilayers. These results are discussed in the light of linearly and exponentially growing films.  相似文献   

12.
Different approaches for the synthesis of binary polyelectrolyte/inorganic layered composite capsules of micron size are described. As the polyelectrolyte part of the composite, a poly(styrene sulfonate)/poly(allylamine hydrochloride) complex was taken; the inorganic component was composed of magnetic nanoparticles (Fe3O4, CoFe2O4, MnFe2O4, ZnFe2O4), insulator nanoparticles (rare-earth fluorides) or metal nanoparticles (Ag). An inner inorganic layer was formed inside the hollow polyelectrolyte capsule via chemical or photochemical reaction in a spatially restricted capsule volume. The inorganic nanophase synthesized was characterized by transmission electron microscopy, scanning electron microscopy, and wide angle X-ray scattering techniques and weakly crystallized particles 6–9 nm in diameter were detected, presumably attached to the inner side of the capsule shell. Polyelectrolyte capsules filled with ferrite (magnetite) particles possess substantial magnetic activity and are easily manipulated in water solution by an external magnetic field.  相似文献   

13.
A new approach to fabricate polyelectrolyte microcapsules is based on exploiting porous inorganic microparticles of calcium carbonate. Porous CaCO3 microparticles (4.5-5.0 microns) were synthesized and characterized by scanning electron microscopy and the Brunauer-Emmett-Teller method of nitrogen adsorption/desorption to get a surface area of 8.8 m2/g and an average pore size of 35 nm. These particles were used as templates for polyelectrolyte layer-by-layer assembly of two oppositely charged polyelectrolytes, poly(styrene sulfonate) and poly(allylamine hydrochloride). Calcium carbonate core dissolution resulted in formation ofpolyelectrolyte microcapsules with an internal matrix consisting of a polyelectrolyte complex. Microcapsules with an internal matrix were analyzed by confocal Raman spectroscopy, scanning electron microscopy, force microscopy, and confocal laser-scanning fluorescence microscopy. The structure was found to be dependent on a number of polyelectrolyte adsorption treatments. Capsules have a very high loading capacity for macromolecules, which can be incorporated into the capsules by capturing them from the surrounding medium into the capsules. In this paper, we investigated the loading by dextran and bovine serum albumin as macromolecules. The amount of entrapped macromolecules was determined by two independent methods and found to be up to 15 pg per microcapsule.  相似文献   

14.
A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film.  相似文献   

15.
Stable hollow polyelectrolyte capsules were produced by the layer‐by‐layer assembling of non‐biodegradable polyelectrolytes – poly(allylamine) and poly(styrenesulfonate) on melamine formaldehyde microcores followed by the core decomposition at low pH. A proteolytic enzyme, α‐chymotrypsin, was encapsulated into these microcapsules with high yields of up to 100%. The encapsulation procedure was based on the protein adsorption onto the capsule shells and on the pH‐dependent opening and closing of capsule wall pores. The protein in the capsules retained a high activity, and thermo‐ and storage stability. The nanostructured polyelectrolyte shell protected the proteinase from a high molecular weight inhibitor. Such enzyme‐loaded capsules can be used as microreactors for biocatalysis.  相似文献   

16.
Redox polyelectrolyte multilayers have been assembled with use of the layer-by-layer (LBL) deposition technique with cationic poly(allylamine) modified with Os(bpy)(2)ClPyCHO (PAH-Os) and anionic poly(styrene)sulfonate (PSS) or poly(vinyl)sulfonate (PVS). Different behavior has been observed in the formal redox potential of the Os(II)/Os(III) couple in the polymer film with cyclic voltammetry depending on the charge of the outermost layer and the electrolyte concentration and pH. The electrochemical quartz crystal microbalance (EQCM) has been used to monitor the exchange of ions and solvent with the external electrolyte during redox switching. At low ionic strength Donnan permselectivity of anions or cations is apparent and the nature of the ion exclusion from the film is determined by the charge of the topmost layer and solution pH. At high electrolyte concentration Donnan breakdown is observed and the osmium redox potential approaches the value for the redox couple in solution. Exchange of anions and water with the external electrolyte under permselective conditions and salt and water under Donnan breakdown have been observed upon oxidation of the film at low pH for the PAH-Os terminating layer. Moreover, at high pH values and with PVS as the terminating layer EQCM mass measurements have shown that cation release was masked by water exchange.  相似文献   

17.
An approach for the entrapment of a polyanion by polyelectrolyte microcapsules is reported. It is based on a reversal changing of microcapsule wall permeability from neutral to basic pH. Polyelectrolyte microcapsules were templated on latex (polystyrene) particles by the layer-by-layer adsorption of oppositely charged polymers of sodium poly(styrene sulfonate) and poly(allylamine hydrochloride), followed by core removal using tetrahydrofuran. In alkaline conditions, the microcapsules swell and become permeable for polymers. During encapsulation, the addition of salt ions increases the amount of the polymer encapsulated and contributes to its protonation because of redistribution of H+ ions across a semipermeable microcapsule wall. The redistribution of small ions across the microcapsule wall was tuned by adding salt according to the Donnan equilibrium and was characterized by H+ sensitive dyes.  相似文献   

18.
Interpolyelectrolyte complex (IPEC) formation between poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) has been studied over a range of ionic strengths by isothermal titration calorimetry (ITC), turbidity titration, and electrostatic layer-by-layer assembly (ELBL). The results indicate that IPEC formation of PSS/PAH in aqueous solution is predominantly entropy-driven. The thermodynamic parameters suggest the formation of different types of complexes and aggregates due to salt-induced conformational changes in the polyelectrolyte conformation. Differences in polyelectrolyte behavior in the different salt-concentration regimes are described in terms of changes in the Debye screening length of the polyelectrolytes. The relationship of the results to the effect of salt concentration on the assembly of polyelectrolyte multilayer films (PEMs) is discussed.  相似文献   

19.
The assembled polyelectrolyte nanotubes composed of poly(styrenesulfonate) and poly(allylamine hydrochloride) multilayers by using the layer-by-layer assembly combined with the porous template method can be transformed into capsules by a high-temperature treatment. Scanning electron microscopy and confocal laser scanning microscopy images revealed the whole transition process. The structure transformation of polyelectrolyte multilayers after annealing can be initiated by the input of thermal energy which leads to a breakage of ion pairs between oppositely charged polyelectrolyte groups. The transition process from tubes to capsules is supposed to be driven by the Raleigh instability and leads to the generated polyelectrolyte capsules with different sizes.  相似文献   

20.
We explored using a magnetic field to modulate the permeability of polyelectrolyte microcapsules prepared by layer-by-layer self-assembly. Ferromagnetic gold-coated cobalt (Co@Au) nanoparticles (3 nm diameter) were embedded inside the capsule walls. The final 5 mum diameter microcapsules had wall structures consisting of 4 bilayers of poly(sodium styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH), 1 layer of Co@Au, and 5 bilayers of PSS/PAH. External alternating magnetic fields of 100-300 Hz and 1200 Oe were applied to rotate the embedded Co@Au nanoparticles, which subsequently disturbed and distorted the capsule wall and drastically increased its permeability to macromolecules like FITC-labeled dextran. The capsule permeability change was estimated by taking the capsule interior and exterior fluorescent intensity ratio using confocal laser scanning microscopy. Capsules with 1 layer of Co@Au nanoparticles and 10 polyelectrolyte bilayers are optimal for magnetically controlling permeability. A theoretical explanation was proposed for the permeability control mechanisms. "Switching on" of these microcapsules using a magnetic field makes this method a good candidate for controlled drug delivery in biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号