首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
In this paper, experimental and numerical studies were performed to investigate the characteristics of longshore current under two mild slopes, the results of which may complement the existing studies, which have mainly focused on steep slopes. The experimental results revealed that the average velocity distribution of the longshore current was significantly different under the two different mild slopes. Under the slope of 1:100, the distribution of the averaged longshore current velocity had a downward concave trend at the nearshore side, while under the slope of 1:40 the trend became convex. In addition, the analysis of the numerical results showed that the distribution of the averaged longshore current velocity was affected by the distribution of the wave height within the surf zone and the bottom friction equations, with the influence of the latter being more significant. For the slope of 1:100, the cross-shore variability of alongshore variability can be calculated using the flow-type bottom friction equation, while for the slope of 1:40, the wave-type bottom friction equation can be used instead. Finally, the secondary breaking wave heights for mild slopes and the distribution of wave set-up are also shown in the study.  相似文献   

2.
A flow-pattern-dependent model, traditionally used for calculation of pressure drop and water hold-up, is accustomed for calculation of the liquid production rates in oil–water horizontal flow, based on the known pressure drop and water hold-up. The area-averaged steady-state one-dimensional two-fluid model is used for stratified flow, while the homogeneous model is employed for dispersed flow. The prediction errors appear to be larger when the production rates are calculated instead of pressure drop and water hold-up. The difference in the calculation accuracies between the direct and inverse calculation is most probably caused by the different uncertainties in the measured values of the input variables and a high sensitivity of the calculated phase flow-rates on even small change of the water hold-up for certain flow regimes. In order to locate the source of error in the standard two-fluid model formulation, several parametric studies are performed. In the first parametric study, we investigate under which conditions the momentum equations are satisfied when the measured pressure drop and water hold-up are imposed. The second and third parametric studies address the influence of the interfacial waves and drop entrainment on the model accuracy, respectively. These studies show that both interfacial waves and drop entrainment can be responsible for the augmentation of the wall-shear stress in oil–water flow. In addition, consideration of the interfacial waves offers an explanation for some important phenomena of the oil–water flow, such as the wall-shear stress reduction.  相似文献   

3.
This study focuses on improving the understanding of the mobility of lightweight wheeled vehicles on sand by testing the significance of payload, ground speed, sand gradation/grain size, and sand moisture content on contact patch pressure and tire sinkage. Extensive testing of a lightweight wheeled all-terrain vehicle (ATV) was structured in two experiments. Tire sinkage was measured at the width-wise center of the imprint of both the tread and the carcass. Pressure distribution in the contact patch was recorded using an embedded pressure pad, from which the average and peak (and difference) pressures were found. In the first experiment, measurements were taken each time the ATV was driven over combinations of four plots of groomed sand, two moisture contents, three payloads, and three speeds. Average pressure was highly affected (95+% confidence) by sand grade, vehicle speed, and payload and the interactions of sand grade-speed, and sand grade-moisture content-vehicle speed, and borderline affected (90-94.9% confidence) by the moisture content-speed interaction. In the second experiment, the ATV was driven over each plot of dry sand one hundred consecutive times at one speed-payload combination without grooming between runs, showing the cumulative effect of multiple passes over each sand pit on each measure of mobility.  相似文献   

4.
This work focuses on the numerical dissipation features of high-order flux reconstruction (FR) method combined with different numerical fluxes in turbulence flows. The famous Roe and AUSM+ numerical fluxes together with their corresponding low-dissipation enhanced versions (LMRoe, SLAU2) and higher resolution variants (HR-LMRoe, HR-SLAU2) are incorporated into FR framework, and the dissipation interplay of these combinations is investigated in implicit large eddy simulation. The numerical dissipation stemming from these convective numerical fluxes is quantified by simulating the inviscid Gresho vortex, the transitional Taylor–Green vortex and the homogenous decaying isotropic turbulence. The results suggest that low-dissipation enhanced versions are preferential both in high-order and low-order cases to their original forms, while the use of HR-SLAU2 has marginal improvements and the HR-LMRoe leads to degenerated solution with high-order. In high-order the effects of numerical fluxes are reduced, and their viscosity may not be dissipative enough to provide physically consistent turbulence when under-resolved.  相似文献   

5.
喻健良  姚福桐  于小哲  闫兴清  罗灿  张炼卓 《爆炸与冲击》2019,39(12):122101-1-122101-7

获得高温、高压下可燃介质爆炸极限数值,对完善复杂工况下可燃介质燃爆安全理论、构建可燃介质爆炸防护技术提供支持。搭建了适用于开展高温、高压工况的20 L球形爆炸实验装置,测量了初始温度为20~270 ℃,初始压力为0.5~2.6 MPa下乙烷在氧气中的爆炸极限,分析温度、压力单因素对乙烷在氧气中的爆炸极限的影响以及温度和压力双因素的耦合影响。结果表明,随着初始压力和初始温度的提高,乙烷在氧气中的爆炸极限逐渐扩大。在温度小于140 ℃时,在高压和低压两种情况下,压力对乙烷爆炸上限的影响基本一致。在温度高于140 ℃时,压力的升高使乙烷爆炸上限升高,但其影响的效果逐渐减小。在初始压力小于1.6 MPa时,温度的升高使乙烷的爆炸上限升高,但其影响的效果变化很小。在压力大于1.6 MPa,温度高于140 ℃时,温度的升高使乙烷的爆炸上限升高,且其影响的效果逐渐增大。温度和压力的升高均使乙烷的爆炸下限降低,但其影响较小。初始温度和初始压力对乙烷在氧气中爆炸极限的耦合作用略小于两个因素作用的和,但大于单个因素的作用。通过拟合得到了C2H6/O2爆炸极限随初始压力、初始温度变化的定量规律。

  相似文献   

6.
As an innovative thermal energy technology, the spray-type packed bed has advantages of high efficiency and low cost. A liquid distributor is the key component for the spray-type packed bed for scattering heat-transfer liquid drops evenly. In this study, the distribution performance and pressure drop of the perforated plate distributors of different orifice diameters were studied experimentally. The experimental results indicate that orifice diameter has a greater effect on the distribution performance compared to flow rate. With an increase in flow rate, the flow pattern through the distributor changes from the uncovered drop to the covered drop and then to the jet flow. The covered drop pattern shows the best performance with a good distribution and a small pressure drop simultaneously, which is the design and optimization principle of the distributor for a spray-type packed bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号