首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
The fluorescence quenching of singlet-excited 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by 22 phenols and 12 alkylbenzenes has been investigated. Quenching rate constants in acetonitrile are in the range of 10(8)-10(9) M(-1)s(-1) for phenols and 10(5)-10(6) M(-1)s(-1) for alkylbenzenes. In contrast to the quenching of triplet-excited benzophenone, no exciplexes are involved, so that a pure hydrogen atom transfer is proposed as quenching mechanism. This is supported by (1) pronounced deuterium isotope effects (kH/kD ca 4-6), which were observed for phenols and alkylbenzenes, and (2) a strongly endergonic thermodynamics for charge transfer processes (electron transfer, exciplex formation). In the case of phenols, linear free energy relationships applied, which led to a reaction constant of rho = -0.40, suggesting a lower electrophilicity of singlet-excited DBO than that of triplet-excited ketones and alkoxyl radicals. The reactivity of singlet-excited DBO exposes statistical, steric, polar and stereoelectronic effects on the hydrogen atom abstraction process in the absence of complications because of competitive exciplex formation.  相似文献   

2.
A fluorescent amino acid derivative (Fmoc-DBO) has been synthesized, which contains 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) as a small, hydrophilic fluorophore with an extremely long fluorescence lifetime (325 ns in H2O and 505 ns in D2O under air). Polypeptides containing both the DBO residue and an efficient fluorescence quencher allow the measurement of rate constants for intramolecular end-to-end contact formation. Bimolecular quenching experiments indicated that Trp, Cys, Met, and Tyr are efficient quenchers of DBO (k(q) = 20, 5.1, 4.5, and 3.6 x 10(8) M(-1) x s(-1) in D2O), while the other amino acids are inefficient. The quenching by Trp, which was selected as an intrinsic quencher, is presumed to involve exciplex-induced deactivation. Flexible, structureless polypeptides, Trp-(Gly-Ser)n-DBO-NH2, were prepared by standard solid-phase synthesis, and the rates of contact formation were measured through the intramolecular fluorescence quenching of DBO by Trp with time-correlated single-photon counting, laser flash photolysis, and steady-state fluorometry. Rate constants of 4.1, 6.8, 4.9, 3.1, 2.0, and 1.1 x 10(7) s(-1) for n = 0, 1, 2, 4, 6, and 10 were obtained. Noteworthy was the relatively slow quenching for the shortest peptide (n = 0). The kinetic data are in agreement with recent transient absorption studies of triplet probes for related peptides, but the rate constants are significantly larger. In contrast to the flexible structureless Gly-Ser polypeptides, the polyproline Trp-Pro4-DBO-NH2 showed insignificant fluorescence quenching, suggesting that a high polypeptide flexibility and the possibility of probe-quencher contact is essential to induce quenching. Advantages of the new fluorescence-based method for measuring contact formation rates in biopolymers include high accuracy, fast time range (100 ps-1 micros), and the possibility to perform measurements in water under air.  相似文献   

3.
哒嗪裂解反应机理的密度泛函理论研究   总被引:1,自引:0,他引:1  
利用密度泛函理论(DFT)方法, 以哒嗪为煤的模型化合物, 在(U)B3LYP/6-31G(d,p)水平下计算了标题化合物的键布居数和键裂解能, 并对其热解机理进行了探讨. 在(U)B3LYP/6-311++G(d,p)水平下计算了热解过程中各物种的单点能, 并对总能量进行了校正. 结果表明, 标题物N-N键的布居数和裂解能均最小, 且各键裂解能随温度变化不大, 热解最终产物为HCN和乙炔, NH3可能是HCN经过二次转换得到的. 采用过渡态理论计算了300~1900 K温度范围内热解的速率常数, 求得lnk与1/T的线性关系.  相似文献   

4.
Kinetic solvent effects on hydrogen abstractions involving C-H donors (dienes, ethers, alkylbenzenes) have been corroborated by experiment and theory (UB3LYP/6-311++G**, polarized continuum model). To single out the effect of solvent polarity, rate constants for scavenging of the cumyloxyl radical and fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene were obtained in binary aprotic mixtures of ethylacetate and acetonitrile. Polar solvents result in a selective stabilization of the reactants (see TOC graphic), which results in slower rate constants.  相似文献   

5.
Flavonoids are structurally diverse and the most ubiquitous groups of dietary polyphenols distributed in various fruits and vegetables. In this study, the interaction between five flavonoids, namely formononetin-7-O-β-D-glucoside, calycosin- 7-O-β-D-glucoside, calycosin, rutin, and quercetin, and bovine serum albumin (BSA) was investigated by fluorescence and UV-vis absorbance spectroscopy. In the discussion, it was proved that the fluorescence quenching of BSA by flavonoids was a result of the formation of a flavonoid-BSA complex. Fluorescence quenching constants were determined using the Stern-Volmer and Lineweaver-Burk equations to provide a measure of the binding affinity between the flavonoids and BSA. The binding constants ranked in the order quercetin>rutin>calycosin>calycosin-7-O-β-D-glucoside ≈ formononetin-7-O-β-D-glucoside. The results of thermodynamic parameters ΔG, ΔH, and ΔS at different temperatures indicated that the hydrophobic interaction played a major role in flavonoid-BSA association. The distance r between BSA and acceptor flavonoids was also obtained according to F?rster's theory of non-radiative energy transfer.  相似文献   

6.
The molecular geometry and electronic structure of hydroxy-substituted naphthazarin (NZ)-7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone (echinochrome A, (Et)NZ(β-OH)3, 1) were calculated by the B3LYP/6-311G(d) method. The influence of the (i) character of the β-OH groups dissociation and (ii) conformational mobility of molecule 1 and the anions, radicals, and radical anions derived from 1 on the energy of their reactions with hydroperoxyl radical was studied by the (U)B3LYP/6-31G and (U)B3LYP/6-311G(d) methods. The enol-enolic tautomerism due to the transfer of hydrogen atoms of α-OH groups and rotational isomerism of the β-OH groups at the C(2) and C(3) atoms and of the α-OH groups at the C(5) and C(8) atoms were studied. The equilibrium in the gas-phase reaction 1 + OOH ⇄ (Et)(HO-β)2NZ(β-O) + HOOH (1) (quenching of hydroperoxyl radical) is shifted to the separated reagents. Heterolysis of the O—H bond in one of the three β-hydroxy groups considerably reduces the energy of subsequent O—H bond homolysis in either of the two remaining β-hydroxy groups. As a consequence, the reaction (Et)(HO-β)2NZ(β-O) + OOH ⇄ (Et)(HO-β,O-β)NZ(β-O) + HOOH (2) (quenching of hydroperoxyl radical) becomes exothermic and the equilibrium is shifted to the formation of hydrogen peroxide. The Gibbs energy gain in reaction (2) varies from −6.4 to −10.9 kcal mol−1 depending on which β-hydroxy group is involved in the O—H bond homolysis. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 400–415, March, 2007.  相似文献   

7.
Marquez C  Pischel U  Nau WM 《Organic letters》2003,5(21):3911-3914
[reaction: see text] The fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by nucleotides has been studied. The quenching mechanism was analyzed on the basis of deuterium isotope effects, tendencies for exciplex formation, and the quenching efficiency in the presence of a molecular container (cucurbit[7]uril). Exciplex-induced quenching appears to prevail for adenosine, cytidine, and uridine, while hydrogen abstraction becomes competitive for thymidine and guanosine. Compared to other fluorescent probes, DBO responds very selectively to the type of nucleotide.  相似文献   

8.
Antioxidant activity of erodiol was examined at the M05-2X/6-311+G(d,p) level of theory in the gas and aqueous phases. The structure and energy of radicals and anions of the most stable erodiol rotamer were analyzed. To estimate antioxidant potential of erodiol, different molecular properties were examined: bond dissociation enthalpy, proton affinity together with electron transfer energy, and ionization potential followed by proton dissociation enthalpy. It was found that hydrogen atom transfer is the prevailing mechanism of erodiol behavior in gas; whereas single electron transfer followed by proton transfer and sequential proton loss electron transfer mechanisms represent the thermodynamically preferred reaction paths in water.  相似文献   

9.
利用激光闪光光解方法研究了一系列胺类、酚类、醇类在脱氧乙腈中猝灭噻吨酮(TX)三重态的反应,得到了相应的瞬态吸收光谱和猝灭速率常数(kq).通过对光谱演变特性的分析,推断出三重态噻吨酮与不含有活泼氢的胺发生了电子转移反应,与含有活泼氢的胺发生了电子-质子转移反应.三重态噻吨酮与酚类、醇类反应中观察到噻吨酮加氢自由基的生成,据此推断出三重态噻吨酮与酚类、醇类发生了氢转移反应.胺类的猝灭速率常数随着反应自由能变(ΔG)的增大而减小,说明电子转移影响了噻吨酮三重态的猝灭.酚类的猝灭速率常数先随ΔG增大而减小,后随酚阳离子的酸性增强逐渐增大,可能是猝灭过程中电子转移影响减弱的同时氢转移影响逐渐增强.醇类的猝灭速率常数随着醇的α-C—H键能的增大而减小,说明α-C—H键能是影响噻吨酮三重态猝灭的关键因素.比较以前研究的胺类、酚类、醇类与三重态呫吨酮(XT)、芴酮(FL)反应的结果可知,由于分子结构差异性的影响,相关的猝灭速率常数按照呫吨酮、噻吨酮、芴酮的顺序逐渐减小.  相似文献   

10.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

11.
The reaction mechanism of 1-chloroethane with hydroxyl radical has been inves- tigated by using density functional theory (DFT) B3LYP/6-31G (d, p) method. All bond dissociation enthalpies were computed at the same theoretical level. It was found that hydrogen abstraction pathway is the most favorable. There are two hydrogen abstraction pathways with activation barriers of 0.630 and 4.988 kJ/mol, respectively, while chlorine abstraction pathway was not found. It was observed that activation energies have a more reasonable correlation with the reaction enthalpy changes (△Hr) than with bond dissociation enthalpies (BDE).  相似文献   

12.
Abstract— Fluorescence lifetimes of 3-methyllumichrome dual fluorescence at 440 nm (alloxazinic) and 520 nm (isoalloxazinic) and of 1,3-dimethyllumichrome, which is unable to phototautomerize, at the same wavelengths have been measured in methanol-acetic acid mixtures. The fluorescence decays of both lumichromes studied are exponential and the phototautomeric fluorescence of 3-methyllumichrome is created within approximately 50 ps. From the initial values of about 0.9 ns (alloxazinic) and 6.4 ns (isoalloxazinic) in 5% acetic acid the lifetimes shorten considerably with increasing acid concentration reaching 0.2 ns for 1,3-dimethyllumichrome and 80 ps for the alloxazinic and 2.4 ns for the isoalloxazinic form of 3-methyllumichrome in pure acid. Static and dynamic fluorescence quenching constants were estimated. The differences in the quenching rate and equilibrium constants of both lumichromes are interpreted in terms of different equilibria of hydrogen bond formation in ground and excited state as influenced by steric effects of the methyl substituent at the N-l position in 1,3-dimethyl. The hydrogen bonding atN–10 of 3-methyllumichrome with acetic acid is a prerequisite for additional hydrogen bonding at N-l enabling excited state proton transfer.  相似文献   

13.
The dual-level direct dynamics method has been employed to investigate the H-abstraction reaction of CF(3)CF(2)CH(2)OH with OH radical, which is predicted to have two classes of possible reaction channels caused by different positions of hydrogen atom attack. The minimum-energy path is calculated at the B3LYP/6-311G(d,p) level, and the energetic information is further refined by the MC-QCISD method. To compare the structures, the other method MPW1K/6-311G(d,p) is also applied to this system. Hydrogen-bonded complexes are presented in the reactant and product sides of the three channels, indicating that each reaction may proceed via an indirect mechanism. The rate constants for each reaction channel are evaluated by canonical variational transition-state theory (CVT) with the small-curvature tunneling correction (SCT) over a wide range of temperatures from 200 to 2000 K. The calculated CVT/SCT rate constants are found to be in good agreement with the available experimental values. The result shows that the variational effect is small, and in the lower-temperature range, the SCT effect is important for each reaction. It is shown that hydrogen abstracted from the -CH(2)- position is the major channel, while H-abstraction from the -OH position may be neglected with the temperature increasing.  相似文献   

14.
The results of a theoretical study of the molecular structure and conformational mobilities of the peroxynitrate CF(2)BrCFBrOONO(2) and its radical decomposition product CF(2)BrCFBrOO are reported in this paper. The most stable structures were calculated from ab initio G3(MP2)B3 and G4(MP2) methods and from density functional theory at the B3LYP/6-311+G(d) and B3LYP/6-311+G(3df) levels of theory. The equilibrium conformation of CF(2)BrCFBrOONO(2) indicates that the bromine atoms lie in position anti to each other and possess a COON dihedral angle of 114°. A quantum statistical analysis shows that about 40% of the internal rotors can freely rotate at room temperature. Our best values for the standard enthalpies of formation of CF(2)BrCFBrOONO(2) and CF(2)BrCFBrOO at 298 K obtained from isodesmic reactions at the G3(MP2)//B3LYP/6-311+G(3df) level of theory are -144.7 and -127.0 kcal mol(-1). From these values and the enthalpy of formation of the NO(2) radical, a CF(2)BrCFBrOO-NO(2) bond dissociation enthalpy of 26.0 ± 2 kcal mol(-1) was estimated.  相似文献   

15.
The intrachain fluorescence quenching of the fluorophore 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is measured in short peptide fragments, namely the two strands and the turn of the N-terminal beta-hairpin of ubiquitin. The investigated peptides adopt a random-coil conformation in aqueous solution according to CD and NMR experiments. The combination of quenchers with different quenching efficiencies, namely tryptophan and tyrosine, allows the extrapolation of the rate constants for end-to-end collision rates as well as the dissociation of the end-to-end encounter complex. The measured activation energies for fluorescence quenching demonstrate that the end-to-end collision process in peptides is partially controlled by internal friction within the backbone, while measurements in solvents of different viscosities (H2O, D2O, and 7.0 M guanidinium chloride) suggest that solvent friction is an additional important factor in determining the collision rate. The extrapolated end-to-end collision rates, which are only slightly larger than the experimental rates for the DBO/Trp probe/quencher system, provide a measure of the conformational flexibility of the peptide backbone. The chain flexibility is found to be strongly dependent on the type of secondary structure that the peptides represent. The collision rates for peptides derived from the beta-strand motifs (ca. 1 x 10(7) s(-1)) are ca. 4 times slower than that derived from the beta-turn. The results provide further support for the hypothesis that chain flexibility is an important factor in the preorganization of protein fragments during protein folding. Mutations to the beta-turn peptide show that subtle sequence changes strongly affect the flexibility of peptides as well. The protonation and charge status of the peptides, however, are shown to have no significant effect on the flexibility of the investigated peptides. The meaning and definition of end-to-end collision rates in the context of protein folding are critically discussed.  相似文献   

16.
The reaction enthalpies related to the individual steps of two phenolic antioxidants action mechanisms, single electron transfer-proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET), for 30 meta and para-substituted phenols (ArOH) were calculated using DFT/B3LYP method. These mechanisms represent the alternative ways to the extensively studied hydrogen atom transfer (HAT) mechanism. Except the comparison of calculated reaction enthalpies with available experimental and/or theoretical values, obtained enthalpies were correlated with Hammett constants. We have found that electron-donating substituents induce the rise in the enthalpy of proton dissociation (PDE) from ArOH+* radical cation (second step in SET-PT) and in the proton affinities of phenoxide ions ArO- (reaction enthalpy of the first step in SPLET). Electron-withdrawing groups cause the increase in the reaction enthalpies of the processes where electron is abstracted, i.e., in the ionization potentials of ArOH (first step in SET-PT) and in the enthalpy of electron transfer from ArO- (second step in SPLET). Found results indicate that all dependences of reaction enthalpies on Hammett constants of the substituents are linear. The calculations of liquid-phase reaction enthalpies for several para-substituted phenols indicate that found trends hold also in water, although substituent effects are weaker. From the thermodynamic point of view, entering SPLET mechanism represents the most probable process in water.  相似文献   

17.
This paper presents a systematic computational study of the mechanism of cyclohexanone-monomer co-initiation in high-temperature homopolymerization of methyl acrylate (MA) and methyl methacrylate (MMA). Previous experimental studies of spontaneous thermal homopolymerization of MA and MMA showed higher monomer conversion in the presence of cyclohexanone than xylene. However, these studies did not reveal the initiation mechanism(s) or the initiating species. To identify the initiation mechanism and the initiating species, we explore four different mechanisms, (1) Kaim, (2) Flory, (3) α-position hydrogen transfer, and (4) Mayo, using first-principles density functional theory (DFT) and second-order M?ller-Plesset perturbation theory (MP2) calculations. Transition-state geometries for each mechanism are determined using B3LYP/6-31G* and assessed with MP2/6-31G*. Activation energies and rate constants are calculated using transition-state theory. The harmonic oscillator approximation and tunneling corrections are applied to compute the reaction rate constants. This study indicates that α-position hydrogen transfer and Mayo mechanisms have comparable barriers and are capable of generating monoradicals for initiating polymerization of MA and MMA; these two mechanisms can cause cyclohexanone-monomer co-initiation in thermal polymerization of MA and MMA.  相似文献   

18.
CASSCF computations show that the hydrogen-transfer-induced fluorescence quenching of the (1)(pi,pi*) excited state of zwitterionic tryptophan occurs in three steps: (1) formation of an intramolecular excited-state complex, (2) hydrogen transfer from the amino acid side chain to the indole chromophore, and (3) radiationless decay through a conical intersection, where the reaction path bifurcates to a photodecarboxylation and a phototautomerization route. We present a general model for fluorescence quenching by hydrogen donors, where the radiationless decay occurs at a conical intersection (real state crossing). At the intersection, the reaction responsible for the quenching is aborted, because the reaction path bifurcates and can proceed forward to the products or backward to the reactants. The position of the intersection along the quenching coordinate depends on the nature of the states and, in turn, affects the formation of photoproducts during the quenching. For a (1)(n,pi*) model system reported earlier (Sinicropi, A.; Pogni, R.; Basosi, R.; Robb, M. A.; Gramlich, G.; Nau, W. M.; Olivucci, M. Angew. Chem., Int. Ed. 2001, 40, 4185-4189), the ground and the excited state of the chromophore are hydrogen acceptors, and the excited-state hydrogen transfer is nonadiabatic and leads directly to the intersection point. There, the hydrogen transfer is aborted, and the reaction can return to the reactant pair or proceed further to the hydrogen-transfer products. In the tryptophan case, the ground state is not a hydrogen acceptor, and the excited-state hydrogen transfer is an adiabatic, sequential proton and electron transfer. The decay to the ground state occurs along a second reaction coordinate associated with decarboxylation of the amino acid side chain and the corresponding aborted conical intersection. The results show that, for (1)(pi,pi*) states, the hydrogen transfer alone is not sufficient to induce the quenching, and explain why fluorescence quenching induced by hydrogen donors is less general for (1)(pi,pi*) than for (1)(n,pi*) states.  相似文献   

19.
The standard enthalpy of formation of the 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide compound in the gas-phase was derived from the enthalpies of combustion of the crystalline solid measured by static bomb combustion calorimetry and its enthalpy of sublimation determined by Knudsen mass-loss effusion at T= 298.15 K. This value is (383.8 +/- 5.4) kJ mol(-1) and was subsequently combined with the experimental gas-phase enthalpy of formation of atomic oxygen and with the computed gas-phase enthalpy of formation of 2-amino-3-quinoxalinecarbonitrile, (382.0 +/- 6.3) kJ mol(-1), in order to estimate the mean (N-O) bond dissociation enthalpy in the gas-phase of 2-amino-3-quinoxalinecarbonitrile-1,4-dioxide. The result obtained is (248.3 +/- 8.3) kJ mol(-1), which is in excellent agreement with the B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d) computed value.  相似文献   

20.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号