首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinduced electron-transfer processes in the systems of chlorophylls (Chl) (chlorophyll-a [Chl-a] and chlorophyll-b) and fullerenes (C60/C70) in both polar and non-polar solvents have been investigated with nanosecond laser photolysis technique, observing the transient spectra in the visible/near-IR regions. By the excitation of Chl in benzonitrile (BN) it has been proved that electron transfer takes place from the triplet excited states of Chl to the ground states of C60/C70. By the excitation of C70 in BN electron transfer takes place from the ground states of Chl to the triplet excited state of C70. In both Chl the rate constants and quantum yields for the electron-transfer processes are as high as those of zinc porphyrins and zinc phthalocyanines, indicating that the long alkyl chains of Chl play no role in retarding the electron transfer. The rate constant for the electron-mediating process from the radical anion of C70 to octylviologen dication yielding the octylviologen radical cation was evaluated. The back electron-transfer process from the viologen radical cation to the radical cation of Chl-a takes place in a longer time-scale, indicating that a photosensitized electron-transfer/electron-mediating cycle is achieved.  相似文献   

2.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   

3.
As a model for riboflavin, lumiflavin was investigated using density functional theory methods (B3LYP/6-31G* and B3LYP/6-31+G**) with regard to the proposed cascade of intermediates formed after excitation to the triplet state, followed by electron-transfer, proton-transfer, and radical[bond]radical coupling reactions. The excited triplet state of the flavin is predicted to be 42 kcal/mol higher in energy than the singlet ground state, and the pi radical anion lies 45.1 kcal/mol lower in energy than the ground-state flavin and a free electron in the gas phase. The former value compares to a solution-phase triplet energy of 49.8 kcal/mol of riboflavin. For the radical anion, the thermodynamically favored position to accept a proton on the flavin ring system is at N(5). A natural population analysis also provided spin density information for the radicals and insight into the origin of the relative stabilities of the six different calculated hydroflavin radicals. The resulting 5H-LF* radical can then undergo radical[bond]radical coupling reactions, with the most thermodynamically stable adduct being formed at C(4'). Vibrational spectra were also calculated for the transient species. Experimental time-resolved infrared spectroscopic data obtained using riboflavin tetraacetate are in excellent agreement with the calculated spectra for the triplet flavin, the radical anion, and the most stable hydroflavin radical.  相似文献   

4.
Molecular oxygen's unique involvement in electron-transfer processes is demonstrated on a series of dyads between porphyrin derivatives and fullerene C60. It has been shown for the first time that oxygen can serve as an inhibitor of back electron transfer by enhancing intersystem crossing of a singlet radical ion pair into its triplet state. The effect is observed only when energy of the charge-separated state is lower than that of the locally excited triplet states. Due to the spin statistics, the reverse intersystem crossing is less efficient, allowing use of oxygen and other paramagnetic species for impeding charge recombination in various electron-transfer systems.  相似文献   

5.
We have measured directly by time-resolved spectroscopy the transient spectra and kinetics of the methylene blue (MB) excited singlet and triplet state as a function of pH from a few picoseconds to several microseconds. The data show that the acidic triplet state (3)MBH(2+) is the protonated analogue of the basic (3)MB(+). It is also shown that the singlet oxygen formation quantum yield is much higher in basic than in acidic media. The transient spectra and their kinetics suggest that because pH exerts a large influence in singlet oxygen and radical formation, it may also be important in bacteria inactivation. Therefore, we performed experiments, which showed that the rate of gram-positive and gram-negative bacteria inactivation at pH 9 is 3-25 times higher than the rate at pH 5.  相似文献   

6.
The blue light photoreceptor phototropin mediates crucial processes in plants leading to optimization of photosynthesis. Phototropin comprises two flavin mononucleotide-binding LOV (light-, oxygen-, or voltage-sensitive) domains. The LOV domains undergo a photocycle upon illumination, in which two intermediates have been detected by UV/Vis spectroscopy. The triplet excited state of flavin is formed and decays within a few microseconds into a photoadduct with an adjacent cysteine, which represents the signaling state of the LOV domain. For bond formation of the photoadduct, several reaction pathways have been proposed, but evidence for an intermediate at ambient conditions has not been found. Here, we performed nanosecond time-resolved UV/Vis spectroscopy on the phototropin-LOV1 domain from Chlamydomonas reinhardtii. We designed a flow cell which was used to efficiently replace the sample after each photoexcitation because the cycling time is in the order of hundreds of seconds. The comparison of difference spectra of the wild type with those of the C57S mutant that produces only the triplet excited state revealed the existence of an additional intermediate between the triplet and the adduct state. This intermediate exhibits spectral properties similar to a neutral flavin radical. This finding supports a reaction mechanism involving a neutral radical pair.  相似文献   

7.
Photosensitized splitting of cis-syn- and trans-syn-l,3-dimethyluracil dimers by 2′,3′,4′,5′-tetraacetylri-boflavin in acetonitrile containing a trace of perchloric acid was studied by laser flash photolysis. Protonation of the flavin prior to excitation resulted in excited singlet and triplet states that abstracted an electron from the dimers and yielded the protonated flavin radical (F1H2+), which was detected by absorption spectroscopy. Electron abstraction by the excited singlet state predominated over abstraction by the triplet state. Approximately one-third to one-half of the excited states quenched by the trans-syn dimer yielded F1H2+, the balance presumably undergoing back electron transfer within the geminate radical ion pair generated by the initial electron transfer. A covalently linked dimer-flavin exhibited very inefficient flavin radical ion formation, consistent with the known low efficiency of dimer splitting in this system. These results constitute the first identification of a flavin radical ion intermediate in photosensitized pyrimidine dimer splitting.  相似文献   

8.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly-guanylic acid (5') in CH3CN-H2O (97 : 3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

9.
In this paper, time-resolved resonance Raman (TR3) spectra of intermediates generated by proton-induced electron-transfer reaction between triplet 2-methoxynaphthalene ((3)ROMe) and decafluorobenzophenone (DFBP) are presented. The TR3 vibrational spectra and structure of 2-methoxynaphthalene cation radical (ROMe(?+)) have been analyzed by density functional theory (DFT) calculation. It is observed that the structure of naphthalene ring of ROMe(?+) deviates from the structure of cation radical of naphthalene.  相似文献   

10.
Magnetic field effects (MFEs) on the radical yield in the photoinduced electron transfer reaction from the p-halogen derivatives (4XDMA) of N,N-dimethylaniline to the excited triplet state of duroquinone (DQ) have been investigated in alcoholic solutions at room temperature. In 1-propanol and 1-butanol solutions, the radical yields decreased as the magnetic field increased and became nearly constant at 1-1.8 T in the DQ-4BrDMA and DQ-4IDMA systems, suggesting that the spin-orbit coupling interaction due to the heavy atoms governs the radical yield. On the other hand, in the methanol solution MFE due to a radical pair mechanism was observed. We concluded that the key intermediate to determine the radical yield is the triplet exciplex or contact radical ion pair in the 1-propanol and 1-butanol solutions, while it is the solvent-separated radical ion pair in the methanol solution.  相似文献   

11.
Cycloreversion of 1,2,3,4-tetraphenylcyclobutanes 1a,b and oxetane 2 is achieved using (thia)pyrylium salts as electron-transfer photosensitizers. Radical cation intermediates involved in the electron-transfer process have been detected using laser flash photolysis. The experimental results are consistent with the reaction taking place from the triplet excited state of the sensitizer.  相似文献   

12.
The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly- guanylic acid (5′) in CH3CN-H2O (97:3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.  相似文献   

13.
The photoinduced reaction of thioxanthone (TX) with various indolic and phenolic derivatives and amino acids like tryptophan and tyrosine has been monitored in sodium dodecyl sulfate micellar medium. Laser flash photolysis and magnetic field effect (MFE) experiments have been used to study the dynamics of the radical pairs. The quenching rate constant with different quenchers in SDS micellar solution has been measured. For indoles the electron-transfer reaction has been found to be followed by proton transfer from the donor molecule, which gives rise to the TX ketyl radical. On the other hand, the electron-transfer reaction in the case of phenols is preceded with formation of a hydrogen-bonded exciplex. The extent of the MFE and magnitude of the magnetic field corresponding to one-half of the saturation value of MFE ( B 1/2) support the fact that hyperfine mechanism plays the primary role. Quenching of MFE in the presence of gadolinium ions confirms that the radical pair is located near the micellar interface. MFE study has been further extended to protein-like bovine serum albumin in micellar solution. The results indicate loss in mobililty of radical pairs in the protein surfactant complex.  相似文献   

14.
Time-resolved (TR) EPR was used to study the photophysics and photochemistry of 1-(3-(methoxycarbonyl)propyl)-1-phenyl[6.6]C61 (M1). The CW TREPR spectra of M1 in the photoexcited triplet state, frozen in a rigid matrix and in liquid solution at room temperature, were compared with those of 3C60. The introduction of the substituent on C60 has a striking effect on the spectra of the triplets, which is attributed to the lifting of the orbital degeneracy by the reduction in symmetry. Fourier transform (FT) EPR was used in an investigation of electron-transfer reactions in liquid solutions mediated by 3M1. Of particular interest was the system of M1/chloranil (CA)/perylene (Pe). Photoexcitation of M1 is found to lead to the formation of the chloranil anion radical and the perylene cation radical. From the chemically induced dynamic electron polarization (CIDEP) patterns in the FTEPR spectra and the dependence of the reaction kinetics on reactant concentrations, it was deduced that CA- is formed by two competing pathways following photoexcitation of M1: (1) direct electron transfer from 3M1 to CA followed by electron transfer from Pe to M1+ and (2) energy transfer from 3M1 to Pe followed by oxidative quenching of 3Pe by CA. In both pathways, M1 acts as a light-energy harvester and mediator of electron-transfer reactions from Pe to CA without itself being consumed in the process, that is, as a photocatalyst. It is found that the functionalization of C60 makes its triplet state a worse electron donor and acceptor, but it has no significant effect on the triplet energy transfer reaction.  相似文献   

15.
Photoinduced charge separation and recombination in a carotenoid-porphyrin-fullerene triad C-P-C(60)(1) have been followed by multifrequency time-resolved electron paramagnetic resonance (TREPR) at intermediate magnetic field and microwave frequency (X-band) and high field and frequency (W-band). The electron-transfer process has been characterized in the different phases of two uniaxial liquid crystals (E-7 and ZLI-1167). The triad undergoes photoinduced electron transfer, with the generation of a long-lived charge-separated state, and charge recombination to the triplet state, localized in the carotene moiety, mimicking different aspects of the photosynthetic electron-transfer process. Both the photoinduced spin-correlated radical pair and the spin-polarized recombination triplet are observed starting from the crystalline up to the isotropic phase of the liquid crystals. The W-band TREPR radical pair spectrum has allowed unambiguous assignment of the spin-correlated radical pair spectrum to the charge-separated state C(.+)-P-C(60)(.-). The magnetic interaction parameters have been evaluated by simulation of the spin-polarized radical pair spectrum and the spin-selective recombination rates have been derived from the time dependence of the spectrum. The weak exchange interaction parameter (J = +0.5 +/- 0.2 G) provides a direct measure of the dominant electronic coupling matrix element V between the C(.+)-P-C(60)(.-) radical pair state and the recombination triplet state (3)C-P-C(60). The kinetic parameters have been analyzed in terms of the effect of the liquid crystal medium on the electron-transfer process. Effects of orientation of the molecular triad in the liquid crystal are evidenced by simulations of the carotenoid triplet state EPR spectra at different orientations of the external magnetic field with respect to the director of the mesophase. The order parameter (S = 0.5 +/- 0.05) has been evaluated.  相似文献   

16.
In the presence of scandium triflate, an efficient photoinduced electron transfer from the triplet excited state of C(60) to p-chloranil occurs to produce C(60) radical cation which has a diagnostic NIR (near-infrared) absorption band at 980 nm, whereas no photoinduced electron transfer occurs from the triplet excited state of C(60) (3C(60)) to p-chloranil in the absence of scandium ion in benzonitrile. The electron-transfer rate obeys pseudo-first-order kinetics and the pseudo-first-order rate constant increases linearly with increasing p-chloranil concentration. The observed second-order rate constant of electron transfer (k(et)) increases linearly with increasing scandium ion concentration. In contrast to the case of the C(60)/p-chloranil/Sc(3+) system, the k(et) value for electron transfer from 3C(60) to p-benzoquinone increases with an increase in Sc(3+) concentration ([Sc(3+)]) to exhibit a first-order dependence on [Sc(3+)], changing to a second-order dependence at the high concentrations. Such a mixture of first-order and second-order dependence on [Sc(3+)] is also observed for a Sc(3+)-promoted electron transfer from CoTPP (TPP(2-) = tetraphenylporphyrin dianion) to p-benzoquinone. This is ascribed to formation of 1:1 and 1:2 complexes between the generated semiquinone radical anion and Sc(3+) at the low and high concentrations of Sc(3+), respectively. The transient absorption spectra of the radical cations of various fullerene derivatives were detected by laser flash photolysis of the fullerene/p-chloranil/Sc(3+) systems. The ESR spectra of the fullerene radical cations were also detected in frozen PhCN at 193 K under photoirradiation of the fullerene/p-chloranil/Sc(3+) systems. The Sc(3+)-promoted electron-transfer rate constants were determined for photoinduced electron transfer from the triplet excited states of C(60), C(70), and their derivatives to p-chloranil and the values are compared with the HOMO (highest occupied molecular orbital) levels of the fullerenes and their derivatives.  相似文献   

17.
As a model of chemical DNA repair, the reductive electron transfer from the aromatic amino acid tyrosine to the radical of the purine base guanosine monophosphate (GMP) was studied by time-resolved chemically induced dynamic nuclear polarization (CIDNP). The guanosyl radicals were photochemically generated in the quenching reaction of the triplet excited dye 2,2'-dipyridyl. Depending on the pH of the aqueous solution, four different guanosyl radicals were observed. The identification of the radicals was possible because of the high sensitivity of CIDNP to distinguish them through their ability or disability of participating in the degenerate electron hopping reaction with the diamagnetic molecules of guanosine monophosphate in the ground state. The CIDNP kinetics in this three-component system containing the dye, GMP, and N-acetyl tyrosine is strongly dependent on the efficiency of the electron-transfer reaction from tyrosine to the nucleotide radical. Quantitative analysis of the CIDNP kinetics obtained at different concentrations of the amino acid, together with the comparison with the CIDNP kinetics of the two-component systems (dipyridyl/tyrosine and dipyridyl/GMP) allowed for the determination of the rate constant ke of the reductive electron-transfer reaction for five pairs of reactants, with different protonation states depending on the pH: GH++*/TyrOH (pH 1.3), G+*/TyrOH (pH 2.9), G(-H)*/TyrOH (pH 7.5), G(-H)*/TyrO- (pH 11.3), and G(-2H)-*/TyrO- (pH 13.3). The rate constant ke varies from (7.1 +/- 3.0) x 10(8) M-1 s-1 (pH 1.3, 2.9) to less than 6 x 10(6) M-1 s-1 (pH 13.3).  相似文献   

18.
The results of an investigation of the thermoluminescence (TL) and electroluminescence (EL) of arylated methylenecyclopropanes 1, systems whose photoinduced electron-transfer (PET) chemistry has been thoroughly studied, are described. In both the TL and EL experiments with 1, electronically excited triplet trimethylenemethane (TMM) biradicals (3)2** are generated by back electron transfer (charge recombination) of a TMM radical cation (hole) 2*+, formed by isomerization of the substrate radical cation (hole, 1*+). The application of this chemistry to the design of new organic light-emitting diodes (OLEDs) is described. The mechanistic features of this reaction system have the potential of overcoming significant problems (e.g., quantum efficiency, difficulty obtaining long wavelength emission, and device durability) normally associated with OLEDs that rely on the use of organic closed-shell hydrocarbons.  相似文献   

19.
The investigations were made on photoinduced electron transfer (ET) from the singlet excited state of rubrene (1RU*) to p-benzoquinone derivatives (duroquinone, 2,5-dimethyl-p-benzoquinone, p-benzoquinone, 2,5-dichloro-p-benzoquinone, and p-chloranil) in benzonitrile (PhCN) by using the steady state and time-resolved spectroscopies. The photoinduced ET produces solvent-separated type charge-separated (CS) species and the charge-recombination (CR) process between RU radical cation and semiquinone radical anions obeys second-order kinetics. Not only the CS species but also the triplet excited state of RU (3RU*) is seen in the transient absorption spectra upon laser excitation of a PhCN solution of RU and p-benzoquinone derivatives. The comparison of their time profiles clearly suggests that the CR process between RU radical cation and semiquinone radical anions to the ground state is independent from the deactivation of 3RU*. This indicates that the CR in a highly exergonic ET occurs at a longer distance with a large solvent reorganization energy, which results in faster ET to the ground state than to the triplet excited state that is lower in energy than the CS state. Photoinduced ET from 3RU* in addition from 1RU* also occurs when p-benzoquinone derivatives with electron-withdrawing substituents were employed as electron acceptors.  相似文献   

20.
Using time-resolved chemically induced dynamic nuclear polarization (CIDNP) techniques, we have studied the mechanism of the photoreactions of triplet excited 4-carboxybenzophenone (CBP) with l-methionine (Met) and 3-(methylthio)propylamine (MTPA) in aqueous solution and the details of the formation of CIDNP at pH from 6.7 to 13.6. At a pH below the pKa of the nitrogen atom of Met, the CIDNP is strongly affected by degenerate electron exchange between the S-S cationic radical dimer and the zwitterionic form of Met with the rate constant kex = 3.4 x 10(8) s(-1) providing an exhaustive explanation of the pH dependence of steady-state CIDNP that was previously interpreted as a manifestation of fast interconversion among three different methionine radical species (Goez, M.; Rozwadowski, J. J. Phys. Chem. A 1998, 102, 7945-7953). By analyzing the polarization of different protons formed in geminate recombination as a function of the pH, we obtained the branching ratio between two reaction pathways for oxidative quenching of (T)CBP via electron transfer from the sulfur and nitrogen atoms of Met and MTPA. Nuclear spin-lattice relaxation times were determined in the dimeric cation radical of Met (T1,S = 8.5 micros). In the cyclic radical cation of MTPA with a three-electron two-center S-N bond, the estimated paramagnetic relaxation is comparatively slow for all protons. Fast deprotonation of the primary aminium radical cation of MTPA and Met in strongly basic solution takes place on the submicrosecond time scale leading to efficient formation of CIDNP in the neutral aminyl radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号