首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure determination of the molybdenum purple bronze Na0.9Mo6O17 is carried out by single-crystal X-ray diffraction. The crystal is monoclinic with space group A2 and the lattice constants are a = 12.983(2), b = 5.518(1), c = 9.591(2) Å, β = 89.94(1)°, Z = 2. Full-matrix least-squares refinement gives the final values of R(F) = 0.028 and Rw(F) = 0.040 for 1484 independent reflections, in which the occupancy factor of the sodium atom becomes 0.899(12). The present structure is built up of the linkage of the MoO4 and MoO6 polyhedra. There are slabs which consist of four layers of distorted MoO6 octahedra sharing corners. Both the structure and the molybdenum valence distribution estimated from the MoO bond lengths are considered to lead to the two-dimensional electronic transport. This structure is compared with those of other members of molybdenum purple bronzes, K0.9Mo6O17 and Li0.9Mo6O17. The difference of the electronic properties among these compounds can be well understood on the basis of their structural characteristics.  相似文献   

2.
Single crystals of the violet-red Li0.9Mo6O17, violet-blue Li0.32MoO3, and the new blue Li0.04MoO3 bronzes have been grown by a temperature gradient flux growth method in evacuated quartz ampoules. Optimal growth conditions determined for each of the phases are reported. Li0.9Mo6O17 is monoclinic, and a quasi-two-dimensional metallic conductor at room temperature, similar to K0.9Mo6O17 · Li0.04MoO3 appears to be a new intercalation compound of MoO3.  相似文献   

3.
Crystals of Li0.33 MoO3 (blue), Rb0.23MoO3 (blue) and Cs0.31MoO3 (red) were grown by electrolysis from MoO3M2MoO4 melts (M =alkali metal) with composition 70–77 mole% MoO3. Melts richer in M2MoO4 produced MoO2 only. Correlation is made between bronze formation and the coordination of Mo in the melt and in the equilibrium solid phase M2Mo4O13. Li0.33MoO3 and Cs0.31MoO3 are semiconductors with high-temperature-range activation energies 0.16 and 0.12 eV. Rb0.23MoO3 has an electrical behavior similar to that of blue KxMoO3 with a semiconductor-metal transition at (170 ± 5) K. ESR spectra observed in Li0.33MoO3 and Rb0.23MoO3 single crystals at 4.2 K show extensive delocalization of the 4d1 electron associated with Mo(V) centers. Attempts to grow molybdenum bronzes containing Ca or Y were unsuccessful.  相似文献   

4.
Four probe electrical resistivity measurements between 1.5 and 300 K were made on single crystals of the violet-red bronze Na0.9Mo6O17 grown by a temperature gradient flux technique. The temperature variation of the resistivity shows metallic conductivity and highly anisotropic behavior similar to K0.9Mo6O17 and Li0.9Mo6O17. The room-temperature resistivity, measured in the direction parallel to the plate axis, is 3.0 × 10?3 Ω cm and perpendicular to that axis it is 0.21 Ω cm. A transition observed at ~88 K is possibly related to the onset of a charge density wave. The temperature variation of the susceptibility show Pauli paramagnetic behavior at high temperature, and highly anomalous behavior in the vicinity of the transition at low temperatures.  相似文献   

5.
The enthalpy changes of salting process of hen-egg white lysozyme in buffer acetate solutions (pH=4.25) as a function of concentration of following electrolytes: LiCl, KCl, K2SO4, Li2 SO4 and (NH4)2SO4 are determined. Obtained data according to McMillan and Mayer’s approach, has been analyzed in the terms of the enthalpic pairwise interaction coefficients: lysozyme – lysozyme hxx, and lysozyme – salt hxy. The ability of cations to precipitate lysozyme solution in relation to the concentration of cations can be seen from the series as follows: Li+> Na+>K+>NH4++  相似文献   

6.
The interaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) with alkali-metal cations (Li+, Na+, K+) in aprotic medium (acetonitrile) has been investigated. Conductance measurements demonstrated that 1:1 metal cation:ligand stoichiometries are found with these cations in this solvent. 7Li and 23Na NMR experiments were carried out by titration of the metal cation solutions with Kryptofix5 solution in CD3CN + CH3CN at 298 K. Thermodynamic parameters of complexation for this ligand and alkali-metal cations in acetonitrile at 278–308 K were derived from titration conductometry. The highest stability is found for sodium complex. The complexation sequence, based on the value of log K at 278–308 K was found to be Na+ > K+ > Li+.  相似文献   

7.
The hydrothermal syntheses of the alkali metal molybdenum bronzes from starting solids (HxMoO3) with structural affinities to the desired products were investigated. Single-phase potassium blue and red bronzes were prepared by the hydrothermal treatments at around 430 K, and characterized by powder X-ray diffraction, IR spectroscopy, and SEM. The formation processes of these two bronzes during the hydrothermal treatments were found to differ. The blue bronze was formed by a structure-inheriting solid-state route from HxMoO3 with x<0.3, whereas the red bronze was formed for x>0.3 through a solution dissolution/deposition route via the formation of MoO3+MoO2.  相似文献   

8.
The active molybdenum sulfide compound Mo2S3, which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo2S3 have been obtained. Activation energy of Li+ migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo2S3 electrode/electrolyte interface (38.8 kJ/mol), and Li+ diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li+ transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo2S3.  相似文献   

9.
We examined low-temperature synthetic route based on the amorphous nature of giant species to succeed to prepare Cs blue bronze (Cs0.3MoO3), which has never obtained by usual high-temperature methods, at ca. 680 K. Solid solutions (K1−xRbx)0.28MoO3 and (Li1−xNax)0.9Mo6O17 were also obtained at lower temperatures (ca. 670 K). For the latter system consisting of non-isostructural end members, Li0.9Mo6O17-structure type solid solution was formed even when 0.25<x<0.70, unlike the case by the usual high-temperature methods. Metastable mixed oxides Ln2Mo3O9 (Ln=La, Gd) were obtained, but not as single phases.  相似文献   

10.
New lithium molybdenum bronzes have been synthesized by electrochemical lithium insertion. Through electrochemical spectroscopy techniques we have detected that lithium insertion proceeds at least in a two-step reduction process. The maximum amount of lithium inserted in β-MoO3 leads to a high specific capacity of the cell of 370 Ah kg–1. However, this capacity was lost after the first charge-discharge cycle, resulting in a total loss of 25%, due to structural transformations. The structural study of the insertion process showed that each step of the process can be associated with the formation of different single phases of variable composition, Li x MoO3. Electronic Publication  相似文献   

11.
Owing to the high lability of cations in the three-dimensional framework of K1+x Mo12S14 (0 ≤ x ≤ 1.6), first-principles calculations and electrochemical methods have been carried out to study the insertion of cations in the empty channels of this compound. The cavity microelectrode that is a suitable electrode for powder material analysis has been used in voltammetric experiments. Results obtained for Li+, Na+, Rb+, K+, Cs+ and NH4 + cations are presented and discussed.  相似文献   

12.
99Mo−99mTc generators were prepared starting from irradiated molybdenum metal instead of MoO3 in order to use reactor irradiation space more economically. The adsorption of molybdenum as sodium molybdate on different kinds of alumina was investigated. The effect of the pH of the column and the aqueous phase concentration of molybdenum were studied and related to the elution yield of99mTc. A study of the radiation damage effect indicated that generators having a high elution efficiency of 90% could be prepared in the 100–600 mCi range. The losses of99Mo were minimized to 10−5-10−4% and those of alumina to 2–5 μg/ml eluate.  相似文献   

13.
Potential surface sections in the complexes of SO 3 2- with Li+ and Na+ are calculated by the CNDO method with a modified potential of interaction between the cores. It is established that the equilibrium geometry of the coordinated sulfite ion corresponds to the bidentate coordination of the onion to the Li+ and Na+ cations. Frequencies of normal vibrations are determined for four types of anion coordination to cations and compared with the experimental frequencies in aqueous sodium sulfite. The bidentate coordination gives the best correspondence with the experimental spectrum. Translated from Zhurnal Struktumoi Khimii, Vol. 38, No. 2, pp. 282–286, March–April, 1997.  相似文献   

14.
A systematic investigation of crystal growth in the cesium molybdate/molybdenum trioxide system is described. A previously unknown blue cesium molybdenum bronze phase has been prepared as well as the known red bronze, Cs0.33MoO3, and high-quality crystals of the Magneli-phase compound, γ-Mo4O11. This new blue bronze, with empirical formula, Cs0.19MoO2.85, is monoclinic with cell constants, a = 19.198(4) Å, b = 5.519(2) Å, c = 12.213(2) Å, and β = 119.44(2)°. Measurements of the susceptibility and of the resistivity vs temperature are reported. As is the case for other alkali molybdenum bronzes, the product formed is determined by the molar ratio of alkali molybdate to molybdenum trioxide and the melt temperature.  相似文献   

15.
We pioneered the study of the electrode properties of glasses containing 80 and 85 wt % LiF and 20 and 15 wt % A1(PO3)3. LiF-80-based glass electrodes functioned as lithium-selective electrodes in 1-0.0001 M LiCl solutions. Contrary to aliminosilicate glasses, these glasses responded to the Li+ ion better than to the Na+ ion and were nonselective to the Hi+ ion. This made them promising for the development of sensors for Li+ ions in different solutions. Forward and reverse transitions of these glasses from the hydrogen to the lithium function and from the lithium to the sodium function are described by the equation of the simple Nikol’skii theory. Presented at the V All-Russian Conference with the Participation of CIS Countries on Electrochemical Methods of Analysis (EMA-99), Moscow, December 6–8, 1999.  相似文献   

16.
XANES and EXAFS data for molybdenum in NiMoO4, Na2MoO4(2H2O), and MoO3 crystals are reported. Analysis of this information and the results of numerical simulations suggest the octahedral oxygen environment of molybdenum in NiMoO4. Institute of Solid State Chemistry and Processing of Minerals, Siberian Branch, Russian Academy of Sciences. Institute of Catalysis, Siberian Branch, Russian Academy of Sciences. Translated fromZhurnal Strukturnoi Khimii, Vol. 36, No. 6, pp. 998–1003, November–December, 1995. Translated by I. Izvekova  相似文献   

17.
Ion Exchange of Monovalent Cations in Synthetic Sodium Polysilicates with Layer Structure Cation-exchange equilibria of synthetic sodium polysilicates Ilerit (Na2O · 8.3SiO2 8.9 H2O) and Magadiite (Na2O · 13 SiO2 · 6.8 H2O) with H+, Li+ and K+ Ions were investigated with respect to their selectivity behaviour. The range of ion selectivity is: H+ > Na+ > Li+ > K+. Thermodynamic data ΔG, ΔH, and ΔS were determined by means of the integral thermodynamic equilibria constants Kth of the ion-exchange reactions.  相似文献   

18.
Cellulose acetate fibers with supported highly dispersed aluminum phosphate were prepared by reacting aluminum-containing cellulose acetate (Al2O3=3.5 wt.%; 1.1 mmol g−1 aluminum atom per gram of the material) with phosphoric acid. Solid-state NMR spectra (CPMAS 31P NMR) data indicated that HPO42− is the species present on the fiber surface. The specific concentration of acidic centers, determined by ammonia gas adsorption, is 0.50 mmol g−1. The ion exchange capacities for Li+, Na+ and K+ ions were determined from ion exchange isotherms at 298 K and showed the following values (in mmol g−1): Li+=0.03, Na+=0.44 and K+=0.50. The H+/Li+ exchange corresponds to the model of the ideal ion exchange with a small value of the corresponding equilibrium constant K=1.1×10−2. Due to the strong cooperative effect, the H+/Na+ and H+/K+ ion exchange is non-ideal. These ion exchange equilibria were treated with the use of models of fixed bi- or tridentate centers, which consider the surface of the sorbent as an assemblage of polyfunctional sorption centers. Both the observed ion exchange capacities with respect to the alkaline metal ions and the equilibrium constants were discussed by taking into consideration the sequence of the ionic hydration radii for Li+, Na+ and K+. The matrix affinity order for the ions decreases as the hydration radii of the cations increase, i.e. Li+>Na+>K+. The high values of the separation factors SNa+/Li+ and SK+/Li+ (up to several hundred) provide quantitative separation of Na+ and K+ from Li+ from a mixture containing these three ions.  相似文献   

19.
MALDI-TOF was used to study molybdenum dioxide (MoO2) containing a nanosized fraction. The composition of cationic clusters of nonstoichiometric lower molybdenum oxides in the gas phase was determined, and the thermodynamic stabilities and configurations of isomers were calculated for selected symmetric molecular structures and for cations MoSO 8 + and Mo5O 9 + . Molecular orbital analysis was performed for two trigonal-bipyramidal clusters Mo5O8 and Mo5O9. Changes in molybdenum–molybdenum interatomic distances in going from MoO 8 + and Mo5O 9 + cations to neutral clusters are discussed.  相似文献   

20.
The acid–base properties of phytic acid [myo-inositol 1,2,3,4,5,6-hexakis(dihydrogen phosphate)] (H12Phy; Phy12–=phytate anion) were studied in aqueous solution by potentiometric measurements ([H+]-glass electrode) in lithium and potassium chloride aqueous media at different ionic strengths (0<I mol L–13) and at t=25 °C. The protonation of phytate proved strongly dependent on both ionic medium and ionic strength. The protonation constants obtained in alkali metal chlorides are considerably lower than the corresponding ones obtained in a previous paper in tetraethylammonium iodide (Et4NI; e.g., at I=0.5 mol L–1, logK3H=11.7, 8.0, 9.1, and 9.1 in Et4NI, LiCl, NaCl and KCl, respectively; the protonation constants in Et4NI and NaCl were already reported), owing to the strong interactions occurring between the phytate and alkaline cations present in the background salt. We explained this in terms of complex formation between phytate and alkali metal ions. Experimental evidence allows us to consider the formation of 13 mixed proton–metal–ligand complexes, MjHiPhy(12–i–j)–, (M+=Li+, Na+, K+), with j7 and i6, in the range 2.5pH10 (some measurements, at low ionic strength, were extended to pH=11). In particular, all the species formed are negatively charged: i+j–12=–5, –6. Very high formation percentages of M+–phytate species are observed in all the pH ranges investigated. The stability of alkali metal complexes follows the trend Li+Na+K+. Some measurements were also performed at constant ionic strength (I=0.5 mol L–1), using different mixtures of Et4NI and alkali metal chlorides, in order to confirm the formation of hypothesized and calculated metal–proton–ligand complex species and to obtain conditional protonation constants in these multi-component ionic media.Presented at SIMEC–02, Santiago de Compostela, 2–6 June 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号