首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
pH-responsive microgels are crosslinked polymer particles that swell when the pH approaches the pK(a) of the ionic monomer incorporated within the particles. In recent work from our group it was demonstrated that the mechanical properties of degenerated intervertebral discs (IVDs) could be restored to normal values by injection of poly(EA/MAA/BDDA) (ethylacrylate, methacrylic acid and butanediol diacrylate) microgel dispersions [J.M. Saunders, T. Tong, C.L. Le Maitre, T.J. Freemont, B.R. Saunders, Soft Matter 3 (2007) 486]. In this work we report the pH dependent swelling and rheological properties of poly(MMA/MAA/EGDMA) (methylmethacrylate and ethyleneglycol dimethacrylate) microgel dispersions. This system was investigated because it contains monomers that are already used as biomaterials. The poly(MMA/MAA/EGDMA) particles exhibit pH-triggered volume swelling ratios of up to ca. 250. The swelling onset for these particles occurs at pH values greater than ca. 6.0. A pK(a) for these particles of ca. 6.7 is consistent with titration and swelling data. Fluid-to-gel phase diagrams for concentrated poly(MMA/MAA/EGDMA) dispersions were determined as a function of polymer volume fraction and pH using tube-inversion measurements. The rheological properties for the gelled microgel dispersions were investigated using dynamic rheology measurements. The elastic modulus data for the poly(MMA/MAA/EGDMA) gelled dispersions were compared to data for poly(EA/MAA/BDDA) microgels. A similar pH-dependence for the elastic modulus was apparent. The maximum elastic modulus was achieved at a pH of about 7.0. The elastic modulus is an exponentially increasing function of polymer volume fraction at pH 7.0. Preliminary cell challenge experimental data are reported that indicate that gelled poly(MMA/MAA/EGDMA) microgel dispersions are biocompatible with cells from human intervertebral discs. However, the duration over which these experiments could be performed was limited by gradual redispersion of the gelled microgel dispersions. Based on the results presented it is suggested that poly(MMA/MAA/EGDMA) microgel would be a good candidate as a biomaterial for structural support of soft connective tissues.  相似文献   

2.
pH-responsive microgels are cross-linked polymer colloids that swell when the pH approaches the pK a of the particles. In this work, we present a comprehensive investigation of pH-triggered particle swelling and gel formation for a range of microgels containing methacrylic acid (MAA). The microgels investigated have the general composition poly(A/MAA/X), where A and X are the primary co-monomer and cross-linking monomer, respectively. The primary co-monomers were methyl methacrylate (MMA), ethyl acrylate (EA) or butyl methacrylate. The cross-linking monomers were either butanediol diacrylate (BDDA) or ethyleneglycol dimethacrylate (EGDMA). The microgels were studied using scanning electron microscopy, photon correlation spectroscopy (PCS) and dynamic rheology measurements. Gel phase diagrams were also constructed. The particles swelled significantly at pH values greater than approximately 6.0. It was shown that poly(EA/MAA/X) microgels swelled more strongly than poly(MMA/MAA/X) microgels. Furthermore, greater swelling occurred for particles prepared using EGDMA than BDDA. Concentrated dispersions of all the microgels studied exhibited pH-triggered gel formation. It was found that the fluid-to-gel transitions for the majority of the six microgel dispersions investigated could be explained using PCS data. In those cases, gelation was attributed to a colloidal glass transition. Interestingly, the microgels that were considered to have the highest hydrophobic content gelation occurred under conditions where little particle swelling was evident from PCS. The data presented show that gelled poly(EA/MAA/BDDA) and poly(MMA/MAA/EGDMA) microgel dispersions have the strongest elasticities at pH = 7.  相似文献   

3.
This study investigates the effects of added Ca(2+) on the properties of poly(Bd/MAA) dispersions (1,3-butadiene and methacrylic acid) and considers the effect of particle composition on the pK(a). Four latex dispersions are considered in detail. These include poly(Bd/6MAA) and poly(Bd/20MAA) which contain, 6 and 20 wt% MAA, respectively, based on the total monomer mass used for dispersion preparation. Two model systems are also used for comparison. These are poly(Bd) and poly(EA/33MAA/BDDA) (EA and BDDA are ethyl acrylate and butanediol diacrylate). The latter is a well-studied model pH-responsive microgel. The apparent pK(a) of the poly(Bd/MAA) dispersions was determined from potentiometric titrations and found to increase with Bd content. The pH-dependence of the particle size was studied using photon correlation spectroscopy. Electrophoretic mobility measurements were also used. The hydrodynamic diameters and mobilities exhibited major changes as the pH approached the pK(a) for the particles. The critical coagulation concentrations were also measured. The results indicate that Ca(2+) caused pronounced dispersion instability at low pH. Moreover, Ca(2+) prevents swelling of the poly(Bd/MAA) particles at high pH. It was found that efficient ionic binding of all of the RCOO(-) groups within the poly(Bd/20MAA) particles occurred when the mole ratio of RCOO(-) to Ca(2+) was less than or equal to 2.0. Consideration of all the data leads to the suggestion that poly(Bd/MAA) particles have a core-shell structure. It is suggested that the particle core contains mostly poly(Bd) and that the shell is comprised of lightly crosslinked poly(Bd-co-MAA) copolymer.  相似文献   

4.
利用预乳化乳液法制备了不同单体配比的聚(甲基丙烯酸甲酯-co-甲基丙烯酸-co-甲基丙烯酸羟乙酯)(P(MMA-co-MAA-co-HEMA))微凝胶分散液;采用透射电子显微镜、动态光散射仪研究了微凝胶的微观形态、粒径大小及其溶胀率;利用试管倒转法对微凝胶分散液的凝胶化相转变行为进行了研究,借助椎板流变仪考察了所形成胶态凝胶的储能模量与单体配比、微凝胶分散液浓度和温度的关系.结果表明,所制备的微凝胶的数均粒径为90 nm左右,当MMA与MAA的投料质量不变时,随着HEMA含量的增加,分散液凝胶化所需的临界最小浓度增大,临界最大pH值减小,胶态凝胶的储能模量增加.当保持单体MMA与HEMA的投料质量不变时,随着单体MAA投料质量的增多,微凝胶的数均粒径和溶胀率增大,胶态凝胶的储能模量先升高后降低;当MAA占单体总摩尔数的25%时,浓度为15 wt%的微凝胶分散液在扫描频率为100 rad/s时,胶态凝胶的储能模量最高可达2×104Pa.这类微凝胶分散液在组织工程支架材料方面有潜在的应用价值.  相似文献   

5.
pH-responsive microgels are crosslinked polymer colloids that swell when the pH approaches the pK a of the particles. They have potential application for injectable gels for tissue repair and drug delivery systems. This study focuses on the pH-triggered gelation behaviour of a series of poly (EA/MAA/X) microgels. EA and MAA are ethylacrylate and methacrylic acid. Here, we investigate the effect of crosslinking monomer type (X) on microgel properties. The crosslinking monomers used were poly (ethyleneglycol) dimethacrylate (PEGD), ethyleneglycol dimethacrylate (EGD) and butanediol diacrylate (BDD). The microgel containing PEGD (m-PEGD) is a new system. The microgel containing BDD (m-BDD) was used as a control system. The concentrated microgel dispersions formed physical gels when the pH was increased to 5.3?C6.7, and the polymer volume fractions (? p ) were above about 0.05. Evidence from photon correlation spectroscopy (PCS) and dynamic rheology was presented for abrupt pH-triggered increases, and then decreases of the hydrodynamic diameters for m-PEGD and the microgel prepared using EGD (m-EGD). This appears to be tuneable through crosslinker structure. An unexpected gelation behaviour, which may involve a new gel state for microgels, was found for m-PEGD dispersions. Uniquely, those dispersions formed gels at pH values less than the microgel's pK a . This behaviour was linked to an outer-shell electrostatic repulsive interaction. The data point to a phenomenon, whereby the m-PEGD shells appear to explode at pH values above 7.0. The control microgel prepared, using BDD (m-BDD), did not show any evidence of shell fragmentation at any pH. That microgel has potential as a model pH-responsive microgel system in that the properties measured by PCS and rheology agreed well. To probe that system in more detail, the rheological data for m-BDD was analysed using scaling theory. The variation of the storage modulus (G') with ? p gave a scaling exponent of 2.0.  相似文献   

6.
This review presents an overview on the research on pH-responsive microgel particles in the last 10 years. Microgels are cross-linked latex particles that are swollen in a good solvent. Significant quantitative studies have been conducted to investigate the swelling behavior (microscopic) and rheological (macroscopic) properties of the pH-responsive microgel particles as a function of neutralization degree, ionic strength, and cross-linked density. Mono-dispersed, alkali-swellable microgels containing carboxylic acid lattices, whose properties display extreme pH sensitivity in water is considered in detail in terms of swelling behavior and rheological properties. Their stability in solution and ability to undergo reversible volume phase transitions in response to pH makes them ideal model systems for the development of a semi-empirical as well as theoretical approach for predicting the viscosity of dilute and concentrated hard and soft sphere systems. The review concludes with a discussion of some recent applications of pH-responsive microgel particles.  相似文献   

7.
Lightly cross-linked poly(4-vinylpyridine)-silica nanocomposite microgel particles have been recently reported to act as pH-responsive particulate emulsifiers [Fujii, S.; Read, E. S.; Armes, S. P.; Binks, B. P. Adv. Mater. 2005, 17, 1014]. In this work, the synthesis and performance of such nanocomposite microgel particles are studied in more detail. Scanning electron microscopy, dynamic light scattering, nitrogen microanalyses, thermogravimetric analysis, aqueous electrophoresis, and acid-base titration were used to characterize the nanocomposites in terms of their particle size and morphology, polymer and silica contents, surface compositions, and critical swelling pH, respectively. Depending on the polarity of the oil phase and the purity of the nanocomposite particles, either oil-in-water or water-in-oil emulsions could be prepared at pH 8-9, but not at pH 2-3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity, light diffraction, and both electron and optical microscopy. In some cases, rapid demulsification could be induced by lowering the solution pH: addition of acid led to protonation of the 4-vinylpyridine residues, which imparted cationic microgel character to the nanocomposite particles. Cross-linking of the nanocomposite microgel particles is essential for their optimum performance as a pH-responsive emulsifier, but unfortunately it is not sufficient to allow recycling.  相似文献   

8.
A new family of water-swellable microgel particles   总被引:3,自引:0,他引:3  
In this study a new family of microgel particles is investigated which contain methylmethacrylate (MMA), ethylacrylate (EA), acrylic acid (AA), glycerol propoxytriacrylate (GPTA), and Emulsogen (Em). GPTA is a trifunctional crosslinking monomer, whereas Em is a polymerisable alcohol ethoxylate surfactant. TEM and PCS data reveal that the extent of microgel swelling originates from a pH-independent contribution (due to Em) as well as a pH-dependent contribution (due to AA). The major contribution to swelling comes from pH-independent swelling. Consideration of the equations governing particle swelling allows the effective pK(a) of the incorporated AA groups to be estimated. There is evidence of a shift of the pK(a) for the AA groups from 4.5 to ca. 9.5 when the microgel particles containing AA also contain Em. This suggests intraparticle hydrogen bonding between AA and ethylene oxide segments at low pH.  相似文献   

9.
The pH-induced swelling of poly(2-vinylpyridine) microgel particles was studied using dynamic light scattering. The increase in particle diameter with decreasing pH was modeled using a well-established thermodynamic model for microgel swelling. The Maxwell construction was applied to extend the model and yield a prediction for a pH-responsive microgel across the entire pH range. The model predicts a first order phase transition for polymer-solvent combinations with a Flory interaction parameter, χ, greater than a critical value χ(c). The modified theory compared favorably to the dynamic light scattering data for the hydrodynamic diameter of microgel particles based on 2-vinylpyridine at different pH values. In particular, the swelling transition is both predicted theoretically and observed experimentally to occur at a pH lower than the pK(a) of the polymer.  相似文献   

10.
Near-monodisperse, sterically stabilized poly(2-vinylpyridine) (P2VP) microgels were synthesized by emulsion polymerization. These particles exhibited completely reversible pH-responsive swelling/deswelling behavior in aqueous solution. Stopped-flow light scattering was employed to investigate the kinetics of pH-induced deswelling in highly dilute dispersions. Upon a pH jump from 2 to various final solution pH values (>or=5.4), the scattered light intensity of an aqueous dispersion of a 1,960 nm microgel exhibited an abrupt initial increase, followed by a gradual decrease to the final equilibrium value. The whole microgel-to-latex deswelling process occurred over time scales of approximately 0.5-1.0 s, which is much slower than the kinetics for latex-to-microgel swelling. The microgel deswelling kinetics depends on the final pH, with a higher final pH leading to a faster rate of shrinkage. Close inspection of the deswelling kinetics during the early stages (<0.2 s) revealed that initial microgel collapse occurred within approximately 50 ms, with more rapid transitions being observed when higher final pH values were targeted. Addition of external salt significantly accelerates the kinetics of deswelling. Systematic studies of the microgel-to-latex transition for a series of six near-monodisperse P2VP particles (with swollen microgel diameters ranging from 1270 to 4230 nm) has also been investigated. The characteristic deswelling time for initial microgel collapse, tau deswell, correlated fairly well with the initial swollen microgel radius, R, in agreement with the Tanaka equation. Moreover, the collective diffusion coefficient of the gel network, D, calculated from the slope of the tau deswell- R (2) curve, was of the order of 10 (-7) cm (2) s (-1).  相似文献   

11.
The effect of cross-linked density on the rheological behavior of model pH-responsive microgel systems consisting of methacrylic acid-ethyl acrylate (MAA-EA) cross-linked with di-allyl phthalate (DAP) was examined. Neutralization of acid groups increases the osmotic pressure exerted by counter-ions trapped in the polymeric network against the ions in bulk solution, which is responsible for the swelling and increase in viscosity. The viscosity exhibits a maximum at approximately 1 wt.% DAP and it decreases to a steady value at 4 wt.% DAP, which is independent of pH and particle concentrations. Static light scattering results confirmed this optimum density as the critical point where sufficient cross-link points are present to produce permanent junctions that permit optimal swelling of the microgel particles. In addition, the variation of relative swelling with cross-linked densities of our model microgel systems agrees with the theoretical scaling law, Q alpha (yalphaN(x))(3/2) for cross-linked densities beyond this optimum point (Q is the swelling ratio, y is the acidic MAA content, N(x) is the average number of monomer units between two cross-linked points, and alpha is the degree of neutralization). By combining the results from light scattering and rheological measurements, we are able to correlate the microstructural evolution of the colloidal systems with their bulk rheological behavior.  相似文献   

12.
 Monodisperse, cationic microgels were synthesized by surfactant-free emulsion copolymerization of 2-vinylpyridine and styrene, using the cationic initiator 2,2′-azobis(2-amidinopropane) dihydrochloride. Low levels of divinylbenzene were employed as a cross-linking agent. The particle morphologies and diameters were characterized by a combination of TEM and photon correlation spectroscopy. At styrene contents less than 40% by weight, the particles were spherical with diameters of approximately 200 nm. The diameter decreased with increasing styrene content and the morphology changed from spherical to irregular. The pH-dependent swelling of the microgel particles was studied in constant ionic strength acetate buffers, as a function of styrene content and cross-link density. Particle diameters increased sharply below pH 4.6 due to ionization of the 2-vinylpyridine residues. At higher styrene levels, the transition pH is shifted to lower values and the extent of swelling is reduced. The pH at which swelling occurred was identical for the three cross-linker levels (0.25, 0.50 and 1.5 wt%), but the extent of swelling decreased in this order as expected. The rate of swelling of the particles was investigated by stopped-flow spectrophotometry; as microgels swell the turbidity of the dispersions decreases and this was followed as a function of time. Higher styrene contents not only reduce the extent of swelling, but also the rate at which maximum swelling is reached, whereas the level of cross-linker employed in this study has no effect on the rate of swelling. Received: 26 May 1997 Accepted: 16 July 1997  相似文献   

13.
Aqueous dispersions of lightly cross-linked poly(4-vinylpyridine)/silica nanocomposite microgel particles are used as a sole emulsifier of methyl myristate and water (1:1 by volume) at various pH values and salt concentrations at 20 degrees C. These particles become swollen at low pH with the hydrodynamic diameter increasing from 250 nm at pH 8.8 to 630 nm at pH 2.7. For batch emulsions prepared at pH 3.4, oil-in-water (o/w) emulsions are formed that are stable to coalescence but exhibit creaming. Below pH 3.3, however, these emulsions are very unstable to coalescence and rapid phase separation occurs just after homogenization (pH-dependent). The pH for 50% ionization of the pyridine groups in the particles in the bulk (pK(a)) was determined to be 3.4 by acid titration measurements of the aqueous dispersion. Thus, the charged swollen particles no longer adsorb at the oil-water interface. For continuous emulsions (prepared at high pH with the pH then decreased abruptly or progressively), demulsification takes place rapidly below pH 3.3, implying that particles adsorbed at the oil-water interface can become charged (protonated) and detached from the interface in situ (pH-responsive). Furthermore, at a fixed pH of 4.0, addition of sodium chloride to the aqueous dispersion increases the degree of ionization of the particles and batch emulsions are significantly unstable to coalescence at a salt concentration of 0.24 mol kg(-1). The degree of ionization of such microgel particles is a critical factor in controlling the coalescence stability of o/w emulsions stabilized by them.  相似文献   

14.
The interaction between carboxylic acid-stabilised gold nanoparticles (AuNP) and pH-responsive microgels is shown. The microgel particles are a copolymer of N-[3-(dimethylamino)propyl]methacrylamide (DMAPMA) and N-isopropylacrylamide (NIPAM). The microgel properties are presented by their hydrodynamic diameter and electrophoretic mobility in response to pH. These microgel particles are pH-responsive under neutral conditions decreasing in diameter beyond pH 7. The dispersion characteristics of AuNP adsorbed onto the microgel network are shown with respect to adsorbed amount and the pH-responsive properties of the AuNP. This data is presented between pH 3 and 6 where the microgel properties remain constant. Asymmetric adsorption of AuNP onto poly(DMAPMA-co-NIPAM) microgels is achieved by adsorption of nanoparticles, from the aqueous phase, onto microgel-stabilised oil-in-water emulsions. These asymmetrically modified microgels display very different dispersion behaviour, in response to pH, due to their dipolar nature.  相似文献   

15.
制备了在修复受损组织方面有应用潜能的纳米级聚(甲基丙烯酸羟乙酯/甲基丙烯酸) (P(HEMA/MAA))微凝胶; 采用试管倒转法对不同pH值和浓度的P(HEMA/MAA)微凝胶分散液的凝胶化相转变行为进行了研究; 借助椎板流变仪考察了低浓度和高浓度微凝胶分散液的流变性能, 并对pH触发物理凝胶化相转变机理进行了推测. 结果表明: 在生理pH值环境下, 一定浓度的P(HEMA/MAA)微凝胶分散液可以发生凝胶化相转变形成凝胶态, pH=7时, HEMA/MAA进料摩尔比为8/2的微凝胶分散液凝胶化后得到的凝胶力学性能最佳, 最大弹性模量(G')可达7.58×103 Pa; P(HEMA/MAA)微凝胶颗粒在不同条件下具有不同的溶胀效果, 导致低浓度分散液的表观粘度发生相应的变化, 并由此推测出微凝胶颗粒的溶胀过程由外及内, 分为三个阶段; 高浓度微凝胶分散液发生凝胶化相转变主要是由颗粒间或颗粒与分散介质间形成的空间静电稳定作用和氢键共同作用引起的.  相似文献   

16.
采用对N-异丙基丙烯酰胺-丙烯酸共聚微凝胶进行改性的方法合成了含苯并18-冠-6功能基团的PNIPAM微凝胶.红外和核磁光谱等手段证明苯并18-冠-6基团被引入到微凝胶中.改性后的微凝胶仍具有很好的温敏性,但是相转变温度由改性前的30℃提高到42℃,并且溶胀度也大大增加.在不控制离子强度的条件下微凝胶的粒径随Na+浓度增加而减小,但是随Pb2+浓度增加微凝胶粒径先减后增.在控制离子强度不变的条件下Na+浓度对微凝胶的粒径影响很小,但是随Pb2+浓度增加微凝胶粒径明显增大,显示较强的铅离子敏感性。  相似文献   

17.
The alkalization of carboxylated acrylic polymer latexes by sodium hydroxide gives rise to swelling of the particles. For a poly(n-butyl acrylate) latex copolymerized with 15 wt % methacrylic acid (MAA) and 7 wt % acrylonitrile the particle volume increases by a factor of 30. The alkali-swelling does not depend on the type of monovalent cation used in the base (LiOH, NaOH, KOH, NH4OH). In contrast, when bivalent cation bases such as Ca(OH)2 are employed no latex swelling is observed during neutralization because of ionic crosslinking of the copolymer chains. Crosslinking also takes place when the bivalent cations (Ca2+, Zn2+, Mg2+) are added as chlorides to dispersions with latexes previously swollen by sodium hydroxide. In these experiments the original size of the latexes is reached again at a molar ratio MAA: bivalent metal ion of 2:1, i.e. at charge compensation of the carboxyl groups. The shrinking behavior is almost independent of the type of bivalent metal ion used. On the other hand, it is more pronounced when trivalent cations such as Fe3+ are added. In general, the experiments demonstrate that the alkali swelling of acrylic latexes is dominated by electrostatic forces. Received: 18 August 1998 Accepted in revised form: 26 October 1998  相似文献   

18.
Scanning transmission X-ray microscopy has been employed to visualize pH-responsive acid-swellable microgel particles directly in their swollen state in aqueous acidic solution. Moreover, NEXAFS studies confirm that the nitrogen atoms of these cationic microgel particles are completely protonated at low pH.  相似文献   

19.
Spherical particles of 50-100 mum size composed of poly(acrylic acid) networks covalently bonded to Pluronic polyether copolymers were tested for swelling in aqueous media. The microgels were cross-linked either by permanent ethylene glycol dimethacrylate (EGDMA) cross-links alone or by EDGMA together with reversible disulfide or biodegradable azoaromatic cross-links. Optimum conditions for a rapid, diffusion-limited swelling of the pH- and temperature-sensitive microgels with nondegradable cross-links were found. The microgels cross-linked by disulfide groups and equilibrium-swollen in the buffer solution exhibited degradation-limited kinetics of swelling under physiological conditions, with a first-order reaction constant, k(1), linearly proportional to the concentration of reducing agents such as dithiotreitol and tris(2-carboxyethyl)phosphine (TCEP). A severalfold faster swelling in the presence of more powerful reducing agent, TCEP, was observed, indicating the chemical specificity of the microgel swelling. The reoxidation of the thiol groups into disulfide cross-links by sodium hypochlorite led to the restoration of the microgels' diameter measured prior to the reduction-reoxidation cycle, which confirms the shape memory of the microgels. Enzymatically degradable azoaromatic cross-links enabled slow microgel swelling due to degradation of the cross-links by azoreductases from the rat intestinal cecum. The low rate of swelling of the Pluronic-containing microgels can enable sustained drug release in colon-specific drug delivery.  相似文献   

20.
The use of microgel particles for controlled uptake and release of active species has great potential. The compatibility of microgel particles with their environment and the functionality of the particles can be achieved by modification of the core microgel through the addition of a shell. In this work, core-shell microgel particles, with a pH-responsive core (polyvinylpyridine) and a temperature-responsive shell (poly-N-isopropylacrylamide), have been prepared and characterized. The uptake and release of an anionic surfactant from the microgels has been investigated as a function of solution pH and temperature. The results indicate that electrostatic attraction between the anionic surfactant and the cationically charged core of the microgel particles is the dominant mechanism for absorption of the surfactant into the core-shell microgel particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号