首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oscillations of first-order neutral delay differential equations   总被引:1,自引:0,他引:1  
Consider the neutral delay differential equation (*) (d/dt)[y(t) + py(t − τ)] + qy(t − σ) = 0, t t0, where τ, q, and σ are positive constants, while p ε (−∞, −1) (0, + ∞). (For the case p ε [−1, 0] see Ladas and Sficas, Oscillations of neutral delay differential equations (to appear)). The following results are then proved. Theorem 1. Assume p < − 1. Then every nonoscillatory solution y(t) of Eq. (*) tends to ± ∞ as t → ∞. Theorem 2. Assume p < − 1, τ > σ, and q(σ − τ)/(1 + p) > (1/e). Then every solution of Eq. (*) oscillates. Theorems 3. Assume p > 0. Then every nonoscillatory solution y(t) of Eq. (*) tends to zero as t → ∞. Theorem 4. Assume p > 0. Then a necessary condition for all solutions of Eq. (*) to oscillate is that σ > τ. Theorem 5. Assume p > 0, σ > τ, andq(σ − τ)/(1 + p) > (1/e). Then every solution of Eq. (*) oscillates. Extensions of these results to equations with variable coefficients are also obtained.  相似文献   

2.
This paper deals with the Cauchy problem utuxx + up = 0; − ∞ < x < + ∞, t>0, u(x, 0) = u0(x); − ∞ < x < + ∞, where 0 < p < 1 and u0(x) is continuous, nonnegative, and bounded. In this case, solutions are known to vanish in a finite time T, and interfaces separating the regions where u(x, t) > 0 and u(x, t) = 0 appear when t is close to T. We describe here all possible asymptotic behaviours of solutions and interfaces near an extinction point as the extinction time is approached. We also give conditions under which some of these behaviours actually occur.  相似文献   

3.
On positive solutions of some nonlinear fourth-order beam equations   总被引:3,自引:0,他引:3  
The existence, uniqueness and multiplicity of positive solutions of the following boundary value problem is considered:
u(4)(t)−λf(t,u(t))=0, for 0<t<1,u(0)=u(1)=u″(0)=u″(1)=0,
where λ>0 is a constant, f :[0,1]×[0,+∞)→[0,+∞) is continuous.  相似文献   

4.
We establish sufficient conditions for the persistence and the contractivity of solutions and the global asymptotic stability for the positive equilibrium N*=1/(a+∑i=0mbi) of the following differential equation with piecewise constant arguments:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, ∑i=0mbi>0, bi0, i=0,1,2,…,m, and a+∑i=0mbi>0. These new conditions depend on a,b0 and ∑i=1mbi, and hence these are other type conditions than those given by So and Yu (Hokkaido Math. J. 24 (1995) 269–286) and others. In particular, in the case m=0 and r(t)≡r>0, we offer necessary and sufficient conditions for the persistence and contractivity of solutions. We also investigate the following differential equation with nonlinear delay terms:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, 1−axg(x,x,…,x)=0 has a unique solution x*>0 and g(x0,x1,…,xm)C1[(0,+∞)×(0,+∞)××(0,+∞)].  相似文献   

5.
Consider the permanence and global asymptotic stability of models governed by the following Lotka-Volterra-type system:
, with initial conditions
xi(t) = φi(t) ≥ o, tt0, and φi(t0) > 0. 1 ≤ in
. We define x0(t) = xn+1(t)≡0 and suppose that φi(t), 1 ≤ in, are bounded continuous functions on [t0, + ∞) and γi, αi, ci > 0,γi,j ≥ 0, for all relevant i,j.Extending a technique of Saito, Hara and Ma[1] for n = 2 to the above system for n ≥ 2, we offer sufficient conditions for permanence and global asymptotic stability of the solutions which improve the well-known result of Gopalsamy.  相似文献   

6.
Let ga(t) and gb(t) be two positive, strictly convex and continuously differentiable functions on an interval (a, b) (−∞ a < b ∞), and let {Ln} be a sequence of linear positive operators, each with domain containing 1, t, ga(t), and gb(t). If Ln(ƒ; x) converges to ƒ(x) uniformly on a compact subset of (a, b) for the test functions ƒ(t) = 1, t, ga(t), gb(t), then so does every ƒ ε C(a, b) satisfying ƒ(t) = O(ga(t)) (ta+) and ƒ(t) = O(gb(t)) (tb). We estimate the convergence rate of Lnƒ in terms of the rates for the test functions and the moduli of continuity of ƒ and ƒ′.  相似文献   

7.
On Hilbert''s Integral Inequality   总被引:5,自引:0,他引:5  
In this paper, we generalize Hilbert's integral inequality and its equivalent form by introducing three parameterst,a, andb.Iff, g L2[0, ∞), then[formula]where π is the best value. The inequality (1) is well known as Hilbert's integral inequality, and its equivalent form is[formula]where π2is also the best value (cf. [[1], Chap. 9]). Recently, Hu Ke made the following improvement of (1) by introducing a real functionc(x),[formula]wherek(x) = 2/π∫0(c(t2x)/(1 + t2)) dtc(x), 1 − c(x) + c(y) ≥ 0, andf, g ≥ 0 (cf. [[2]]). In this paper, some generalizations of (1) and (2) are given in the following theorems, which are other than those in [ [2]].  相似文献   

8.
Consider the uniform persistence (permanence) of models governed by the following Lotka–Volterra-type delay differential system:
where each ri(t) is a nonnegative continuous function on [0,+∞), ri(t)0, each ai0 and τijk(t)t, 1i,jn, 0km.In this paper, we establish sufficient conditions of the uniform persistence and contractivity for solutions (and global asymptotic stability). In particular, we extend the results in Wang and Ma (J. Math. Anal. Appl. 158 (1991) 256) for a predator–prey system and Lu and Takeuchi (Nonlinear Anal. TMA 22 (1994) 847) for a competitive system in the case n=2, to the above system with n2.  相似文献   

9.
Positive solution to a special singular second-order boundary value problem   总被引:1,自引:0,他引:1  
Let λ be a nonnegative parameter. The existence of a positive solution is studied for a semipositone second-order boundary value problem
where d>0,α≥0,β≥0,α+β>0, q(t)f(t,u,v)≥0 on a suitable subset of [0,1]×[0,+)×(−,+) and f(t,u,v) is allowed to be singular at t=0,t=1 and u=0. The proofs are based on the Leray–Schauder fixed point theorem and the localization method.  相似文献   

10.
In this paper, we study oscillation of second-order functional differential equations with mixed nonlinearities
where τ0, p(t)C1[0,), q(t),qi(t),e(t)C[0,), p(t)>0, . Without assuming that q(t), qi(t) and e(t) are nonnegative, the results given in [Y.G. Sun, F.W. Meng, Interval criteria for oscillation of second-order differential equations with mixed nonlinearities, Appl. Math. Comput. 198 (2008) 375–381] have been extended to the aforementioned functional differential equation.  相似文献   

11.
The main objective of this article is to study the oscillatory behavior of the solutions of the following nonlinear functional differential equations (a(t)x'(t))' δ1p(t)x'(t) δ2q(t)f(x(g(t))) = 0,for 0 ≤ t0 ≤ t, where δ1 = ±1 and δ2 = ±1. The functions p,q,g : [t0, ∞) → R, f :R → R are continuous, a(t) > 0, p(t) ≥ 0,q(t) ≥ 0 for t ≥ t0, limt→∞ g(t) = ∞, and q is not identically zero on any subinterval of [t0, ∞). Moreover, the functions q(t),g(t), and a(t) are continuously differentiable.  相似文献   

12.
13.
We investigate the large-time behaviour of solutions to the nonlinear heat-conduction equation with absorption ut = Δ(uσ + 1) − uβ in Q = RN × (0, ∞) (E) with N 1, σ > 0 and critical absorption exponent β = σ + 1 + 2/N; the initial function u(x, 0) = 0 is assumed to be integrable, nonnegative and compactly supported. We prove that u converges as t → ∞ to a unique self-similar function which is a contracted version of one of the asymptotic profiles of the nonabsorptive problem ut = Δ(uσ + 1), the same for any initial data. The cornerstone of the proof is a result about ω-limits of (infinite-dimensional) asymptotical dynamical systems. Combining this result with an asymptotic evaluation of the mass function as well as typical PDE estimates gives the behaviour of (E) for large times.Similar unusual asymptotic behaviour is obtained for the equation ut = div(¦Du¦σ Du) − uβ with same conditions on σ and u(x, 0) and critical value for β = σ + 1 + (σ + 2)/N.  相似文献   

14.
Discriminant analysis for locally stationary processes   总被引:1,自引:0,他引:1  
In this paper, we discuss discriminant analysis for locally stationary processes, which constitute a class of non-stationary processes. Consider the case where a locally stationary process {Xt,T} belongs to one of two categories described by two hypotheses π1 and π2. Here T is the length of the observed stretch. These hypotheses specify that {Xt,T} has time-varying spectral densities f(u,λ) and g(u,λ) under π1 and π2, respectively. Although Gaussianity of {Xt,T} is not assumed, we use a classification criterion D( f:g), which is an approximation of the Gaussian likelihood ratio for {Xt,T} between π1 and π2. Then it is shown that D( f:g) is consistent, i.e., the misclassification probabilities based on D( f:g) converge to zero as T→∞. Next, in the case when g(u,λ) is contiguous to f(u,λ), we evaluate the misclassification probabilities, and discuss non-Gaussian robustness of D( f:g). Because the spectra depend on time, the features of non-Gaussian robustness are different from those for stationary processes. It is also interesting to investigate the behavior of D( f:g) with respect to infinitesimal perturbations of the spectra. Introducing an influence function of D( f:g), we illuminate its infinitesimal behavior. Some numerical studies are given.  相似文献   

15.
In this paper, we consider boundary value problems for nonlinear differential equations on the semi-axis (0,∞) and also on the whole axis (−∞,∞), under the assumption that the left-hand side being a second order linear differential expression belongs to the Weyl limit-circle case. The boundary value problems are considered in the Hilbert spaces L2(0,∞) and L2(−∞,∞), and include boundary conditions at infinity. The existence and uniqueness results for solutions of the considered boundary value problems are established.  相似文献   

16.
Suppose on a probability space (Ω, F, P), a partially observable random process (xt, yt), t ≥ 0; is given where only the second component (yt) is observed. Furthermore assume that (xt, yt) satisfy the following system of stochastic differential equations driven by independent Wiener processes (W1(t)) and (W2(t)): dxt=−βxtdt+dW1(t), x0=0, dytxtdt+dW2(t), y0=0; α, β∞(a,b), a>0. We prove the local asymptotic normality of the model and obtain a large deviation inequality for the maximum likelihood estimator (m.l.e.) of the parameter θ = (α, β). This also implies the strong consistency, efficiency, asymptotic normality and the convergence of moments for the m.l.e. The method of proof can be easily extended to obtain similar results when vector valued instead of one-dimensional processes are considered and θ is a k-dimensional vector.  相似文献   

17.
Let be a probability space and let Pn be the empirical measure based on i.i.d. sample (X1,…,Xn) from P. Let be a class of measurable real valued functions on For define Ff(t):=P{ft} and Fn,f(t):=Pn{ft}. Given γ(0,1], define n(δ):=1/(n1−γ/2δγ). We show that if the L2(Pn)-entropy of the class grows as −α for some α(0,2), then, for all and all δ(0,Δn), Δn=O(n1/2),
and
where and c(σ)↓1 as σ↓0 (the above inequalities hold for any fixed σ(0,1] with a high probability). Also, define
Then for all
uniformly in and with probability 1 (for the above ratio is bounded away from 0 and from ∞). The results are motivated by recent developments in machine learning, where they are used to bound the generalization error of learning algorithms. We also prove some more general results of similar nature, show the sharpness of the conditions and discuss the applications in learning theory.  相似文献   

18.
We consider a positive self-adjoint operator A and formal rank one perturbations B = A + α(φ, ·)φ, where φ −2(A) but φ −1 (A), with s(A) the usual scale of spaces. We show that B can be defined for such φ and what are essentially negative infinitesimal values of α. In a sense we will make precise, every rank one perturbation is one of three forms: (i) φ −1(A), α ; (ii) φ −1, α = ∞; or (iii) the new type we consider here.  相似文献   

19.
Let ƒ be a continuous map of the compact unit interval I = [0, 1], such that ƒ2, the second iterate of ƒ, is topologically transitive in I. If for some x and y in I and any t in I there exists lim(1/n) # {in; |ƒi(x) − ƒi(y)| < t} for n → ∞, denote it by φxy(t). In the paper we consider the class (ƒ) if all φxy. The main results are that (ƒ) is convex and pointwise closed. Using this we show that (ƒ) is always bigger than the class (ƒ) of probability distributions generated analogously by single trajectories (and corresponding to the class of probability invariant measures of ƒ), and prove that there are universal generators of probability distributions, i.e., maps ƒ such that (ƒ) is the class of all non-decreasing functions I I (contrary to this, (ƒ) for no ƒ). These results can be extended to more general continuous maps. One of the possible applications is to use the size of (ƒ) as a measure of the degree of chaos of ƒ.  相似文献   

20.
For a functionfLp[−1, 1], 0<p<∞, with finitely many sign changes, we construct a sequence of polynomialsPnΠnwhich are copositive withfand such that fPnp(f, (n+1)−1)p, whereω(ft)pdenotes the Ditzian–Totik modulus of continuity inLpmetric. It was shown by S. P. Zhou that this estimate is exact in the sense that if f has at least one sign change, thenωcannot be replaced byω2if 1<p<∞. In fact, we show that even for positive approximation and all 0<p<∞ the same conclusion is true. Also, some results for (co)positive spline approximation, exact in the same sense, are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号